Find the common difference or common ratio of the sequence \( -8.2,-8.4,-8.6, \ldots \) ? a. \( r=0.2 \) b. \( r=-0.2 \) c. \( d=0.2 \) d. \( d=-0.2 \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Extra Insights
The sequence \( -8.2, -8.4, -8.6, \ldots \) is an arithmetic sequence because the difference between consecutive terms is constant. To find the common difference \( d \), you subtract the first term from the second term: \( -8.4 - (-8.2) = -0.2 \). Thus, the common difference is \( d = -0.2 \). The correct answer is: d. \( d=-0.2 \) In an arithmetic sequence, the common difference indicates how much you add or subtract to get from one term to the next. In this case, you're subtracting 0.2 to get to the next term, making it a straightforward way to analyze similar sequences. Understanding common differences helps in real-world applications such as calculating expenses over time or tracking progress in a project.
