Pregunta
upstudy study bank question image url

19. One number is 16 more than another. If the smaller number is subtracted trom two thirds of the larger number, the result is one fourth of the sum of the two numbers. Find the numbers.

Ask by Washington Adkins. in the United States
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The two numbers are 8 and 24.

Solución

Let the smaller number be x. Then the larger number is x + 16. According to the problem, two-thirds of the larger number minus the smaller number equals one fourth of the sum of the two numbers. This gives us the equation:   (2/3)(x + 16) - x = 1/4 [x + (x + 16)] Simplify the right side:   x + (x + 16) = 2x + 16, so 1/4 [2x + 16] = x/2 + 4. Now our equation is:   (2/3)(x + 16) - x = x/2 + 4 To eliminate fractions, multiply every term by 6 (the least common multiple of 3, 2, and 4):   6 × (2/3)(x + 16) - 6x = 6 × (x/2) + 6 × 4 This simplifies to:   4(x + 16) - 6x = 3x + 24 Expanding and combining like terms:   4x + 64 - 6x = 3x + 24   -2x + 64 = 3x + 24 Bring like terms together:   64 - 24 = 3x + 2x   40 = 5x Solve for x:   x = 40/5 = 8 Since the larger number is x + 16:   Larger number = 8 + 16 = 24 Thus, the two numbers are 8 and 24.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

Let's denote the smaller number as \( x \) and the larger number as \( x + 16 \). According to the problem, if we subtract \( x \) from two-thirds of the larger number, we should get one-fourth of the sum of the two numbers. We can set up the equation as follows: \[ \frac{2}{3}(x + 16) - x = \frac{1}{4}(x + (x + 16)) \] Now, let’s simplify this equation step-by-step! First, simplify the left side: \[ \frac{2}{3}(x + 16) - x = \frac{2x + 32}{3} - x = \frac{2x + 32 - 3x}{3} = \frac{-x + 32}{3} \] Now, simplify the right side: \[ \frac{1}{4}(x + (x + 16)) = \frac{1}{4}(2x + 16) = \frac{2x + 16}{4} = \frac{x + 8}{2} \] Now we have: \[ \frac{-x + 32}{3} = \frac{x + 8}{2} \] Cross-multiplying to eliminate the fractions gives: \[ -2(-x + 32) = 3(x + 8) \] Expanding both sides results in: \[ 2x - 64 = 3x + 24 \] Now, isolate \( x \): \[ 2x - 3x = 24 + 64 \implies -x = 88 \implies x = -88 \] So the smaller number \( x = -88 \) and the larger number is: \[ x + 16 = -88 + 16 = -72 \] Thus, the two numbers are \( -88 \) and \( -72 \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad