Pregunta
Solve the problem. 4) The function H described by \( H(x)=2.75 x+71.48 \) can be used to estimate the height, in centimeters, of a woman whose humerus (the bone from the elbow to the shoulder) is \( x \mathrm{~cm} \) long. Estimate the height of a woman whose humerus is 34.3 cm long.
Ask by Li Rowe. in the United States
Feb 26,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
The estimated height of the woman is approximately 165.81 centimeters.
Solución
To solve the problem, substitute x = 34.3 into the function H(x):
H(x) = 2.75·x + 71.48
Calculate 2.75 multiplied by 34.3:
2.75 · 34.3 = 68.6 + 25.725 = 94.325
Then add 71.48:
94.325 + 71.48 = 165.805
Rounded to a reasonable degree of precision, the estimated height of the woman is approximately 165.81 centimeters.
Respondido por UpStudy AI y revisado por un tutor profesional
Como
error msg


The Deep Dive
To estimate the height of a woman whose humerus is 34.3 cm long, we can plug this value into the function \(H(x)\): \[ H(34.3) = 2.75 \times 34.3 + 71.48 \] Calculating this step-by-step: 1. First, multiply \(2.75\) by \(34.3\): \[ 2.75 \times 34.3 \approx 94.325 \] 2. Next, add \(71.48\): \[ 94.325 + 71.48 \approx 165.805 \] So, the estimated height of the woman is approximately **165.8 cm**.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium