Pregunta
upstudy study bank question image url

(ii) \( \frac{81^{a x} \times 27^{x}}{9^{x}}=729 \) (iii) Find the value of \( x \) and \( y \). \( 9^{a y} \times 2^{x}=72 \) (iv) \( 3^{2 y}=81 \) Evaluate the following index expressions (i) \( 25^{3 / 2} \times 9^{3 / 3 / 2} \) in

Ask by Rodriguez Chen. in Kenya
Feb 28,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

\( x = 3 \), \( y = 2 \), and the value of the expression \( 25^{3/2} \times 9^{3/(3/2)} \) is 10125.

Solución

Let's solve the problems step by step. ### Problem (ii) We have the equation: \[ \frac{81^{a x} \times 27^{x}}{9^{x}}=729 \] First, we can express all the numbers in terms of base 3: - \( 81 = 3^4 \) - \( 27 = 3^3 \) - \( 9 = 3^2 \) - \( 729 = 3^6 \) Now, substituting these into the equation gives: \[ \frac{(3^4)^{a x} \times (3^3)^{x}}{(3^2)^{x}} = 3^6 \] This simplifies to: \[ \frac{3^{4ax} \times 3^{3x}}{3^{2x}} = 3^6 \] Combining the exponents in the numerator: \[ \frac{3^{4ax + 3x}}{3^{2x}} = 3^6 \] Now, we can simplify the left side: \[ 3^{4ax + 3x - 2x} = 3^6 \] \[ 3^{4ax + x} = 3^6 \] Since the bases are the same, we can set the exponents equal to each other: \[ 4ax + x = 6 \] Factoring out \( x \): \[ x(4a + 1) = 6 \] Thus, we have: \[ x = \frac{6}{4a + 1} \] ### Problem (iii) We need to solve the equation: \[ 9^{a y} \times 2^{x} = 72 \] Again, express \( 9 \) and \( 72 \) in terms of base 3: - \( 9 = 3^2 \) - \( 72 = 8 \times 9 = 2^3 \times 3^2 \) Substituting gives: \[ (3^2)^{a y} \times 2^{x} = 2^3 \times 3^2 \] This simplifies to: \[ 3^{2ay} \times 2^{x} = 2^3 \times 3^2 \] Now, we can equate the bases: 1. For base 3: \[ 2ay = 2 \implies ay = 1 \implies y = \frac{1}{a} \] 2. For base 2: \[ x = 3 \] ### Problem (iv) We have the equation: \[ 3^{2y} = 81 \] Expressing \( 81 \) in terms of base 3: \[ 3^{2y} = 3^4 \] Setting the exponents equal gives: \[ 2y = 4 \implies y = 2 \] ### Summary of Results From the above calculations: - \( x = 3 \) - \( y = 2 \) - \( a = \frac{1}{2} \) (from \( ay = 1 \)) ### Problem (i) Now, we evaluate the expression: \[ 25^{3/2} \times 9^{3/(3/2)} \] First, simplify \( 9^{3/(3/2)} \): \[ 9^{3/(3/2)} = 9^{3 \cdot \frac{2}{3}} = 9^2 = 81 \] Now, simplify \( 25^{3/2} \): \[ 25^{3/2} = (5^2)^{3/2} = 5^{2 \cdot \frac{3}{2}} = 5^3 = 125 \] Now, multiply the two results: \[ 125 \times 81 \] Calculating \( 125 \times 81 \): \[ 125 \times 81 = 10125 \] Thus, the final result for the index expression is: \[ \boxed{10125} \]

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

Let’s dive into some exciting historical background and real-world application of indices and exponents! Did you know that the concept of exponents dates back to ancient civilizations? The ancient Egyptians used rudimentary forms of multiplication, which are the forerunners of exponentiation. They had hieroglyphs to represent large numbers, similar to how we use powers today, making it clear that the understanding of big numbers has deep historical roots! In today's world, exponents are critical in various fields, from finance, where compound interest relies on exponential growth, to technology, where algorithms utilize indices to optimize processes. For instance, in computing, processes can grow exponentially based on data input, reaffirming the importance of understanding these mathematical principles in a tech-driven society.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad