Pregunta
upstudy study bank question image url

A man commutes to work a distance of 40 miles and returns on the same route at the end of the day. His average rate on the retum trip is 15 miles per hour faster than his average rate on the outgoing trip. Write the total time, T, in hours, devoted to his outgoing and retum trips as a function of his rate on the outgoing trip, \( x \). Then find and interpret \( \mathrm{T}(30) \). \[ \text { Hint: Time traveled }=\frac{\text { Distance traveled }}{\text { Rate of travel }} \] \[ I(30)=\overline{9} \text { (Simplity your answer.) } \] What does \( T(30) \) mean? A. It is the total time devoted to the man's commute when his rate of travel for the outgoing trip is 30 miles per hour. B. It is the total time devoted to the man's commute when his rate of travel for the return trip is 30 miles per hour faster then his rate of travel for the outgoing trip. C. It is the total time devoted to the man's commute when his rate of travel for the outgoing trip is 30 miles per hour faster then his rate of travel for the return trip. D. It is the average rate of travel for the two trips combined.

Ask by Carrillo Elliott. in the United States
Feb 24,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

\( T(30) \) represents the total time the man spends commuting when his outgoing trip speed is 30 miles per hour.

Solución

Let x be the man’s average rate in mph on the outgoing trip. Then his time for the outgoing trip is 40/x hours, and since the return trip is 15 mph faster (rate = x + 15 mph) over the same 40-mile distance, the time for the return trip is 40/(x + 15) hours. Thus, the total time T in hours for the round-trip commute is given by   T(x) = 40/x + 40/(x + 15). Now, if we evaluate T at x = 30 mph, we get   T(30) = 40/30 + 40/(30 + 15)     = 40/30 + 40/45     = 4/3 + 8/9       (Converting each fraction to a common denominator)     = (12/9 + 8/9)     = 20/9 hours. This means that when the man's average rate on the outgoing trip is 30 mph, his total commute time for both trips is 20/9 hours. Interpreting T(30): Option A states:   "It is the total time devoted to the man's commute when his rate of travel for the outgoing trip is 30 miles per hour." This is the correct interpretation.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the total time \( T \) devoted to the man's commute, we can break it down into two parts: the outgoing trip and the return trip. If the outgoing trip rate is \( x \) miles per hour, then the time for the outgoing trip is \( \frac{40}{x} \) hours. The return trip rate is \( x + 15 \) miles per hour, which means the time for the return trip is \( \frac{40}{x + 15} \) hours. Therefore, the total time \( T \) as a function of \( x \) is: \[ T(x) = \frac{40}{x} + \frac{40}{x + 15}. \] Now, calculating \( T(30) \): \[ T(30) = \frac{40}{30} + \frac{40}{30 + 15} = \frac{4}{3} + \frac{40}{45} = \frac{4}{3} + \frac{8}{9} = \frac{12}{9} + \frac{8}{9} = \frac{20}{9} \text{ hours (or approximately } 2.22 \text{ hours).} \] This means \( T(30) \) indicates the total time spent commuting when the rate for the outgoing trip is 30 miles per hour. A. It is the total time devoted to the man's commute when his rate of travel for the outgoing trip is 30 miles per hour.

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad