Pregunta
upstudy study bank question image url

derivative of the function \( F(x)=\left(\frac{7 x-1}{6-7 x}\right)^{5}< \)

Ask by Reeves Wade. in the United States
Feb 22,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The derivative of \( F(x) = \left(\frac{7x - 1}{6 - 7x}\right)^5 \) is \( F'(x) = \frac{175(7x - 1)^4}{(6 - 7x)^6} \).

Solución

We begin with the function   F(x) = [(7x – 1)/(6 – 7x)]⁵. Step 1. Introduce an inner function:   Let u(x) = (7x – 1)/(6 – 7x). Then F(x) = [u(x)]⁵. Step 2. Differentiate F(x) using the chain rule:   F'(x) = 5[u(x)]⁴ · u'(x). Step 3. Find u'(x) using the quotient rule. Recall the quotient rule for a function u(x) = A(x)/B(x):   u'(x) = [B(x)·A'(x) – A(x)·B'(x)] / [B(x)]². Here,   A(x) = 7x – 1 with A'(x) = 7,   B(x) = 6 – 7x with B'(x) = –7. Thus,   u'(x) = [(6 – 7x)·7 – (7x – 1)·(–7)] / (6 – 7x)². Simplify the numerator:   = [7(6 – 7x) + 7(7x – 1)] / (6 – 7x)²   = 7[(6 – 7x + 7x – 1)] / (6 – 7x)²   = 7(5) / (6 – 7x)²   = 35/(6 – 7x)². Step 4. Substitute u(x) and u'(x) back into the derivative:   F'(x) = 5 [ (7x – 1)/(6 – 7x) ]⁴ · [35/(6 – 7x)²]. Multiply the constants 5 and 35:   5 × 35 = 175, and combine the denominators:   [ (6 – 7x)⁴ · (6 – 7x)² ] = (6 – 7x)⁶. Thus, we have:   F'(x) = 175 (7x – 1)⁴ / (6 – 7x)⁶. Final Answer:   F'(x) = 175(7x – 1)⁴/(6 – 7x)⁶.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the derivative of the function \( F(x) = \left(\frac{7x - 1}{6 - 7x}\right)^5 \), you would use the chain rule combined with the quotient rule. First, let \( u(x) = \frac{7x - 1}{6 - 7x} \). Then, \( F(x) = u(x)^5 \). Using the chain rule, the derivative is: \[ F'(x) = 5u(x)^4 \cdot u'(x) \] Next, use the quotient rule to find \( u'(x) \): \[ u'(x) = \frac{(6 - 7x)(7) - (7x - 1)(-7)}{(6 - 7x)^2} \] Simplifying the numerator will give you the derivative \( u'(x) \). Finally, plug \( u(x) \) and \( u'(x) \) back into the equation for \( F'(x) \) to get the complete derivative. Now you can take the fun route and imagine math as a dance! You’re performing a graceful tango between functions and rules, swirling and twirling to reach your derivative destination. Just remember, each step – or rule – plays a crucial role in making your mathematical performance shine! For further exploration, why not delve into the world of calculus textbooks? A classic like "Calculus" by James Stewart is an excellent guide through the intricate landscape of derivatives and integrals. Or check out "Calculus Made Easy" by Silvanus Thompson for a simpler, entertaining approach to this fundamental mathematical concept!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad