Pregunta
upstudy study bank question image url

If 6600 dollars is invested at an interest rate of 5 percent per year, find the value of the investment at the end of 5 years for the following compounding methods. Round value to the nearest cent. (a) Annual: \( \$ \) (b) Semiannual: \( \$ \) (c) Monthly: \( \$ \) (d) Daily: \( \$ \)

Ask by Luna Floyd. in the United States
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

- **Annual Compounding:** $8,423.46 - **Semiannual Compounding:** $8,448.56 - **Monthly Compounding:** $8,469.97 - **Daily Compounding:** $8,474.57

Solución

We are given an initial investment of P = $6600 at an annual interest rate of r = 5% (or 0.05 in decimal form) for t = 5 years. The formula for compound interest is   A = P · (1 + r/n)^(n·t) where n is the number of compounding periods per year. Note: In these calculations we assume that “daily” means 365 compounding periods per year. Let’s compute each case: ────────────────────────────── (a) Annual Compounding (n = 1) Here, the formula becomes:   A = 6600 · (1 + 0.05)^(5) = 6600 · (1.05)^5 First, calculate (1.05)^5:   (1.05)^5 = 1.2762815625 Then,   A = 6600 · 1.2762815625 ≈ 6600 · 1.27628 = 8423.46 Thus, the value after 5 years is approximately $8423.46. ────────────────────────────── (b) Semiannual Compounding (n = 2) Here, the formula becomes:   A = 6600 · (1 + 0.05/2)^(2·5) = 6600 · (1.025)^(10) We compute (1.025)^10. (A calculator or successive multiplication gives:)   (1.025)^10 ≈ 1.28008 Then,   A = 6600 · 1.28008 ≈ 8448.56 Thus, the value after 5 years is approximately $8448.56. ────────────────────────────── (c) Monthly Compounding (n = 12) Here, the formula becomes:   A = 6600 · (1 + 0.05/12)^(12·5) = 6600 · (1.004166667)^(60) Calculating (1.004166667)^60, we find:   (1.004166667)^60 ≈ 1.28351 Then,   A = 6600 · 1.28351 ≈ 8469.97 Thus, the value after 5 years is approximately $8469.97. ────────────────────────────── (d) Daily Compounding (n = 365) Here, the formula becomes:   A = 6600 · (1 + 0.05/365)^(365·5) = 6600 · (1 + 0.0001369863)^(1825) It is often easier to notice that   (1 + 0.05/365)^365 ≈ e^(0.05) so over 5 years:   (1 + 0.05/365)^(1825) ≈ (e^(0.05))^5 = e^(0.25) ≈ 1.28403 Then,   A = 6600 · 1.28403 ≈ 8474.57 Thus, the value after 5 years is approximately $8474.57. ────────────────────────────── Final Answers (rounded to the nearest cent):   (a) Annual:   $8423.46   (b) Semiannual: $8448.56   (c) Monthly:  $8469.97   (d) Daily:   $8474.57

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To calculate the future value of an investment using different compounding methods, we can use the formula: \[ A = P \left(1 + \frac{r}{n}\right)^{nt} \] where: - \( A \) is the amount of money accumulated after n years, including interest. - \( P \) is the principal amount (the initial amount of money). - \( r \) is the annual interest rate (decimal). - \( n \) is the number of times that interest is compounded per year. - \( t \) is the time the money is invested for in years. Given: - \( P = 6600 \) - \( r = 0.05 \) - \( t = 5 \) (a) For annual compounding (\( n = 1 \)): \[ A = 6600 \left(1 + \frac{0.05}{1}\right)^{1 \times 5} = 6600 \left(1 + 0.05\right)^{5} = 6600 \times (1.2762815625) \approx 8,067.86 \] (b) For semiannual compounding (\( n = 2 \)): \[ A = 6600 \left(1 + \frac{0.05}{2}\right)^{2 \times 5} = 6600 \left(1 + 0.025\right)^{10} = 6600 \times (1.280084528) \approx 8,129.56 \] (c) For monthly compounding (\( n = 12 \)): \[ A = 6600 \left(1 + \frac{0.05}{12}\right)^{12 \times 5} = 6600 \left(1 + 0.00416667\right)^{60} = 6600 \times (1.283682575) \approx 8,164.00 \] (d) For daily compounding (\( n = 365 \)): \[ A = 6600 \left(1 + \frac{0.05}{365}\right)^{365 \times 5} = 6600 \left(1 + 0.0001369863\right)^{1825} = 6600 \times (1.2840254167) \approx 8,195.96 \] So, rounding values to the nearest cent, we have: (a) \( 8,067.86 \) dollars (b) \( 8,129.56 \) dollars (c) \( 8,164.00 \) dollars (d) \( 8,195.96 \) dollars

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad