Pregunta
upstudy study bank question image url

What is the differintial equetion of \( y=e^{r x} \)

Ask by Peters Lewis. in Nigeria
Feb 21,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The differential equation for \( y = e^{r x} \) is \( \frac{dy}{dx} - r y = 0 \).

Solución

To find the differential equation that y = e^(rx) satisfies, we differentiate y with respect to x. Step 1: Differentiate y = e^(rx)   y = e^(rx)   y' = d/dx [e^(rx)] = r e^(rx) Step 2: Express y' in terms of y Since y = e^(rx), substitute back:   y' = r y Step 3: Write the differential equation in standard form The differential equation is:   dy/dx = r y or equivalently,   dy/dx - r y = 0 Thus, the function y = e^(rx) is a solution of the differential equation:   dy/dx - r y = 0.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the differential equation for \( y = e^{rx} \), we need to take its derivatives. The first derivative of \( y \) is \( y' = r e^{rx} \). The second derivative is \( y'' = r^2 e^{rx} \). By eliminating the constant \( r \), we can formulate a differential equation: \( y'' - r^2 y = 0 \). However, since \( r \) can be any constant, we can simply express this as \( y'' - \frac{y'}{y} = 0 \) after substitution, making it a second-order linear equation. Did you know that differential equations have been shaping our understanding of the natural world since the 17th century? Mathematicians like Isaac Newton and Gottfried Wilhelm Leibniz laid the groundwork for calculus, which is fundamental for formulating differential equations. This interplay has allowed scientists to model everything from the motion of planets to population dynamics, proving that these equations are not just abstract concepts, but fundamental tools in science! For anyone interested in diving deeper, a classic yet accessible recommendation is “Ordinary Differential Equations” by Morris Tenenbaum and Harry Pollard. This book is designed for beginners and is filled with practical examples that bridge theory and application. It provides a solid foundation, making it easier to tackle real-world problems using differential equations!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad