Responder
Here are the solutions to the equations:
1. \( m = 3 \)
2. \( m = 62 \)
3. \( d = 8 \)
4. \( r = 3 \)
5. \( x = 4 \)
6. \( t = \frac{77}{29} \)
7. \( y = 7 \)
8. \( x \approx 15.8 \)
9. \( x = 28 \)
10. \( v = 20 \)
11. The equation is false.
12. \( c = 12 \)
13. The equation is false.
14. \( c = 17 \)
Solución
Solve the equation by following steps:
- step0: Solve for \(d\):
\(7d=56\)
- step1: Divide both sides:
\(\frac{7d}{7}=\frac{56}{7}\)
- step2: Divide the numbers:
\(d=8\)
Solve the equation \( 9 y=63 \).
Solve the equation by following steps:
- step0: Solve for \(y\):
\(9y=63\)
- step1: Divide both sides:
\(\frac{9y}{9}=\frac{63}{9}\)
- step2: Divide the numbers:
\(y=7\)
Solve the equation \( \frac{3}{4} c=51 / 4 \).
Solve the equation by following steps:
- step0: Solve for \(c\):
\(\frac{3}{4}c=\frac{51}{4}\)
- step1: Multiply by the reciprocal:
\(\frac{3}{4}c\times \frac{4}{3}=\frac{51}{4}\times \frac{4}{3}\)
- step2: Multiply:
\(c=17\)
Solve the equation \( 15 m=45 \).
Solve the equation by following steps:
- step0: Solve for \(m\):
\(15m=45\)
- step1: Divide both sides:
\(\frac{15m}{15}=\frac{45}{15}\)
- step2: Divide the numbers:
\(m=3\)
Solve the equation \( \frac{1}{2} v=10 \).
Solve the equation by following steps:
- step0: Solve for \(v\):
\(\frac{1}{2}v=10\)
- step1: Multiply by the reciprocal:
\(\frac{1}{2}v\times 2=10\times 2\)
- step2: Multiply:
\(v=20\)
Solve the equation \( 9 x=143 \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(9x=143\)
- step1: Divide both sides:
\(\frac{9x}{9}=\frac{143}{9}\)
- step2: Divide the numbers:
\(x=\frac{143}{9}\)
Solve the equation \( \frac{2}{7} x=8 \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(\frac{2}{7}x=8\)
- step1: Multiply by the reciprocal:
\(\frac{2}{7}x\times \frac{7}{2}=8\times \frac{7}{2}\)
- step2: Multiply:
\(x=28\)
Solve the equation \( 21 x=84 \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(21x=84\)
- step1: Divide both sides:
\(\frac{21x}{21}=\frac{84}{21}\)
- step2: Divide the numbers:
\(x=4\)
Solve the equation \( 14 r=42 \).
Solve the equation by following steps:
- step0: Solve for \(r\):
\(14r=42\)
- step1: Divide both sides:
\(\frac{14r}{14}=\frac{42}{14}\)
- step2: Divide the numbers:
\(r=3\)
Solve the equation \( 2 m=124 \).
Solve the equation by following steps:
- step0: Solve for \(m\):
\(2m=124\)
- step1: Divide both sides:
\(\frac{2m}{2}=\frac{124}{2}\)
- step2: Divide the numbers:
\(m=62\)
Solve the equation \( 29 t=77 \).
Solve the equation by following steps:
- step0: Solve for \(t\):
\(29t=77\)
- step1: Divide both sides:
\(\frac{29t}{29}=\frac{77}{29}\)
- step2: Divide the numbers:
\(t=\frac{77}{29}\)
Solve the equation \( \frac{2}{3} c=8 \).
Solve the equation by following steps:
- step0: Solve for \(c\):
\(\frac{2}{3}c=8\)
- step1: Multiply by the reciprocal:
\(\frac{2}{3}c\times \frac{3}{2}=8\times \frac{3}{2}\)
- step2: Multiply:
\(c=12\)
Solve the equation \( \frac{3}{5^{2}}=12 \).
Check the equality by following steps:
- step0: Check the equality is true or false:
\(\frac{3}{5^{2}}=12\)
- step1: Multiply both sides of the equation by LCD:
\(\frac{3}{5^{2}}\times 5^{2}=12\times 5^{2}\)
- step2: Simplify the equation:
\(3=300\)
- step3: Check the equality:
\(\textrm{false}\)
Solve the equation \( \frac{4}{6^{2}}=71 / 3 \).
Check the equality by following steps:
- step0: Check the equality is true or false:
\(\frac{4}{6^{2}}=\frac{71}{3}\)
- step1: Divide the terms:
\(\frac{1}{3^{2}}=\frac{71}{3}\)
- step2: Calculate:
\(0.\dot{1}=\frac{71}{3}\)
- step3: Calculate:
\(0.\dot{1}=23.\dot{6}\)
- step4: Check the equality:
\(\textrm{false}\)
Here are the solutions to the equations provided:
1. **Equation:** \( 15 m = 45 \)
**Solution:**
\[
m = \frac{45}{15} = 3
\]
2. **Equation:** \( 2 m = 124 \)
**Solution:**
\[
m = \frac{124}{2} = 62
\]
3. **Equation:** \( 7 d = 56 \)
**Solution:**
\[
d = \frac{56}{7} = 8
\]
4. **Equation:** \( 14 r = 42 \)
**Solution:**
\[
r = \frac{42}{14} = 3
\]
5. **Equation:** \( 21 x = 84 \)
**Solution:**
\[
x = \frac{84}{21} = 4
\]
6. **Equation:** \( 29 t = 77 \)
**Solution:**
\[
t = \frac{77}{29}
\]
7. **Equation:** \( 9 y = 63 \)
**Solution:**
\[
y = \frac{63}{9} = 7
\]
8. **Equation:** \( 9 x = 143 \)
**Solution:**
\[
x = \frac{143}{9} \approx 15.8
\]
9. **Equation:** \( \frac{2}{7} x = 8 \)
**Solution:**
\[
x = 8 \cdot \frac{7}{2} = 28
\]
10. **Equation:** \( \frac{1}{2} v = 10 \)
**Solution:**
\[
v = 10 \cdot 2 = 20
\]
11. **Equation:** \( \frac{3}{5^{2}} = 12 \)
**Solution:**
This equation is false since \( \frac{3}{25} \neq 12 \).
12. **Equation:** \( \frac{2}{3} c = 8 \)
**Solution:**
\[
c = 8 \cdot \frac{3}{2} = 12
\]
13. **Equation:** \( \frac{4}{6^{2}} = \frac{71}{3} \)
**Solution:**
This equation is false since \( \frac{4}{36} \neq \frac{71}{3} \).
14. **Equation:** \( \frac{3}{4} c = \frac{51}{4} \)
**Solution:**
\[
c = \frac{51}{4} \cdot \frac{4}{3} = 17
\]
If you have any further questions or need additional assistance, feel free to ask!
Respondido por UpStudy AI y revisado por un tutor profesional

Explicar

Simplifique esta solución