Pregunta
upstudy study bank question image url

ASK YOUR TEACHER PRACTICE ANOTHER When a certain polyatomic gas undergoes adiabatic expansion, its pressure \( p \) and volume \( V \) satisfy the equation \( p V^{1.6}=k \), where \( k \) is a constant. Find the relationship between the related rates \( \frac{d p}{d t} \) and \( \frac{d^{\prime} V}{d t} \) in terms of \( p \) and \( V \). \[ \frac{d V}{d t}=(\square) \frac{d p}{d t} \]

Ask by Cummings Lawson. in the United States
Feb 28,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

\[ \frac{d V}{d t} = -\frac{V}{1.6 p} \cdot \frac{d p}{d t} \]

Solución

We start with the relation during the adiabatic expansion:   p · V^(1.6) = k (a constant). Differentiating both sides with respect to time t gives:   d/dt [p · V^(1.6)] = 0. Using the product rule:   V^(1.6) · (dp/dt) + p · 1.6 · V^(0.6) · (dV/dt) = 0. Now, solve for dV/dt in terms of dp/dt, p, and V:   1.6 p V^(0.6) (dV/dt) = – V^(1.6) (dp/dt). Divide both sides by 1.6 p V^(0.6):   dV/dt = – [V^(1.6) / (1.6 p V^(0.6))] (dp/dt). Simplify the exponent by subtracting the exponents in V:   V^(1.6) / V^(0.6) = V^(1.6 – 0.6) = V¹. Thus, we have:   dV/dt = – (V/(1.6 p)) (dp/dt). So the relationship between the rates is:   dV/dt = (–V/(1.6 p)) (dp/dt). This is the final answer.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the relationship between the rates of change of pressure and volume in terms of \( p \) and \( V \), we start from the given equation for pressure and volume, \[ p V^{1.6} = k. \] Differentiating both sides with respect to time \( t \), we apply the product rule: \[ \frac{d}{dt}(p) \cdot V^{1.6} + p \cdot \frac{d}{dt}(V^{1.6}) = 0. \] For \( \frac{d}{dt}(V^{1.6}) \), we use the chain rule: \[ \frac{d}{dt}(V^{1.6}) = 1.6 V^{0.6} \frac{dV}{dt}. \] Substituting this back into our differentiation gives: \[ \frac{dp}{dt} V^{1.6} + p \cdot 1.6 V^{0.6} \frac{dV}{dt} = 0. \] Rearranging the equation to isolate \(\frac{dV}{dt}\): \[ p \cdot 1.6 V^{0.6} \frac{dV}{dt} = -\frac{dp}{dt} V^{1.6}. \] Thus, \[ \frac{dV}{dt} = -\frac{V^{1.6}}{p \cdot 1.6 V^{0.6}} \frac{dp}{dt} = -\frac{V}{1.6 p} \frac{dp}{dt}. \] Therefore, we can express the relationship as: \[ \frac{d V}{d t} = -\frac{V}{1.6 p} \frac{d p}{d t}. \] So the final expression is: \[ \frac{d V}{d t} = -\frac{V}{1.6 p} \frac{d p}{d t}. \] In the form requested, we can fill in the square: \[ \frac{d V}{d t} = -\frac{V}{1.6 p} \frac{d p}{d t}. \]

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad