Pregunta
upstudy study bank question image url

(a) Using the first principles of differentiation, find the first derivative of \( f(x)=-3 x^{2}+\frac{2}{x} \) at \( x=-1 \).

Ask by Stewart Martin. in South Africa
Jan 10,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The derivative of \( f(x) = -3x^{2} + \frac{2}{x} \) at \( x = -1 \) is **4**.

Solución

To find the first derivative of the function \( f(x) = -3x^{2} + \frac{2}{x} \) at \( x = -1 \) using the **first principles of differentiation**, follow these steps: ### Step 1: Recall the Definition of the Derivative The derivative of \( f(x) \) at a point \( x \) is given by: \[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} \] ### Step 2: Compute \( f(x + h) \) \[ f(x + h) = -3(x + h)^2 + \frac{2}{x + h} \] Expand and simplify: \[ f(x + h) = -3(x^2 + 2xh + h^2) + \frac{2}{x + h} = -3x^2 - 6xh - 3h^2 + \frac{2}{x + h} \] ### Step 3: Find \( f(x + h) - f(x) \) \[ f(x + h) - f(x) = (-3x^2 - 6xh - 3h^2 + \frac{2}{x + h}) - (-3x^2 + \frac{2}{x}) = -6xh - 3h^2 + \frac{2}{x + h} - \frac{2}{x} \] ### Step 4: Divide by \( h \) and Take the Limit \[ f'(x) = \lim_{h \to 0} \frac{-6xh - 3h^2 + \frac{2}{x + h} - \frac{2}{x}}{h} \] Simplify each term: \[ f'(x) = \lim_{h \to 0} \left( -6x - 3h + \frac{-2h}{x(x + h)} \right) \] As \( h \to 0 \), the term \( -3h \) approaches 0, and the fraction simplifies: \[ \frac{-2h}{x(x + h)} = \frac{-2}{x^2} \quad (\text{since } h \to 0) \] Thus: \[ f'(x) = -6x - \frac{2}{x^2} \] ### Step 5: Evaluate at \( x = -1 \) \[ f'(-1) = -6(-1) - \frac{2}{(-1)^2} = 6 - 2 = 4 \] ### Final Answer The derivative of \( f(x) \) at \( x = -1 \) is **4**.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the first derivative of \( f(x) = -3x^2 + \frac{2}{x} \) using the first principles of differentiation, we start from the definition of the derivative: \[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} \] Substituting \( x = -1 \): 1. First, calculate \( f(-1) \): \[ f(-1) = -3(-1)^2 + \frac{2}{-1} = -3 - 2 = -5 \] 2. Now calculate \( f(-1 + h) \): \[ f(-1 + h) = -3(-1 + h)^2 + \frac{2}{-1 + h} \] Expanding \( (-1 + h)^2 = 1 - 2h + h^2 \): \[ f(-1 + h) = -3(1 - 2h + h^2) + \frac{2}{-1 + h} = -3 + 6h - 3h^2 + \frac{2}{-1 + h} \] 3. Now, we calculate \( f(-1 + h) - f(-1) \): \[ f(-1 + h) - f(-1) = \left(-3 + 6h - 3h^2 + \frac{2}{-1 + h}\right) - (-5) = 2 + 6h - 3h^2 + \frac{2}{-1 + h} \] 4. Now plug this into the derivative formula: \[ f'(-1) = \lim_{h \to 0} \frac{2 + 6h - 3h^2 + \frac{2}{-1 + h}}{h} \] 5. Simplifying the fraction as \( h \to 0 \): The term \( \frac{2}{-1 + h} \) approaches \( -2 \) as \( h \) approaches \( 0 \). Putting it all together: \[ f'(-1) = \lim_{h \to 0} \frac{2 + 6h - 3h^2 - 2}{h} = \lim_{h \to 0} \frac{6h - 3h^2}{h} = \lim_{h \to 0} (6 - 3h) = 6 \] Thus, the first derivative of \( f(x) \) at \( x = -1 \) is: \[ \boxed{6} \]

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad