(a) Using the first principles of differentiation, find the first derivative of \( f(x)=-3 x^{2}+\frac{2}{x} \) at \( x=-1 \).
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Extra Insights
To find the first derivative of \( f(x) = -3x^2 + \frac{2}{x} \) using the first principles of differentiation, we start from the definition of the derivative: \[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} \] Substituting \( x = -1 \): 1. First, calculate \( f(-1) \): \[ f(-1) = -3(-1)^2 + \frac{2}{-1} = -3 - 2 = -5 \] 2. Now calculate \( f(-1 + h) \): \[ f(-1 + h) = -3(-1 + h)^2 + \frac{2}{-1 + h} \] Expanding \( (-1 + h)^2 = 1 - 2h + h^2 \): \[ f(-1 + h) = -3(1 - 2h + h^2) + \frac{2}{-1 + h} = -3 + 6h - 3h^2 + \frac{2}{-1 + h} \] 3. Now, we calculate \( f(-1 + h) - f(-1) \): \[ f(-1 + h) - f(-1) = \left(-3 + 6h - 3h^2 + \frac{2}{-1 + h}\right) - (-5) = 2 + 6h - 3h^2 + \frac{2}{-1 + h} \] 4. Now plug this into the derivative formula: \[ f'(-1) = \lim_{h \to 0} \frac{2 + 6h - 3h^2 + \frac{2}{-1 + h}}{h} \] 5. Simplifying the fraction as \( h \to 0 \): The term \( \frac{2}{-1 + h} \) approaches \( -2 \) as \( h \) approaches \( 0 \). Putting it all together: \[ f'(-1) = \lim_{h \to 0} \frac{2 + 6h - 3h^2 - 2}{h} = \lim_{h \to 0} \frac{6h - 3h^2}{h} = \lim_{h \to 0} (6 - 3h) = 6 \] Thus, the first derivative of \( f(x) \) at \( x = -1 \) is: \[ \boxed{6} \]
