Pregunta
Find the slope, if it exists, of the line containing the pair of points \( (6,-10) \) and \( (-8,-10) \). Select the correct choice below and, if necessary, fill in the answer box to complete your choice. A. The slope of the line is \( \square \). (Type an integer or a simplified fraction.) B. The slope is undefined.
Ask by May Mcdonald. in the United States
Feb 19,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
The slope of the line is 0.
Solución
To find the slope of the line through the points (6, -10) and (-8, -10), use the slope formula:
slope (m) = (y₂ - y₁) / (x₂ - x₁).
Let (x₁, y₁) = (6, -10) and (x₂, y₂) = (-8, -10):
m = (-10 - (-10)) / (-8 - 6)
m = (0) / (-14)
m = 0
Thus, the slope of the line is 0, which corresponds to a horizontal line.
Answer: A. The slope of the line is 0.
Respondido por UpStudy AI y revisado por un tutor profesional
Como
error msg


Mind Expander
To find the slope of the line through the points \( (6,-10) \) and \( (-8,-10) \), we use the slope formula \( m = \frac{y_2 - y_1}{x_2 - x_1} \). Plugging in the coordinates: \[ m = \frac{-10 - (-10)}{-8 - 6} = \frac{0}{-14} = 0. \] This means the slope of the line is 0, indicating a horizontal line. A. The slope of the line is \( 0 \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium