Evaluate \( \sum_{i=1}^{8} 5 \times 3^{i-1} \) Give an exact answer, do not round.
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Extra Insights
To evaluate the sum \( \sum_{i=1}^{8} 5 \times 3^{i-1} \), we can factor out the constant \( 5 \) since it does not depend on \( i \): \[ \sum_{i=1}^{8} 5 \times 3^{i-1} = 5 \sum_{i=1}^{8} 3^{i-1} \] Next, we need to evaluate the sum \( \sum_{i=1}^{8} 3^{i-1} \). This is a geometric series where the first term \( a = 3^0 = 1 \) and the common ratio \( r = 3 \). The number of terms \( n = 8 \). The formula for the sum \( S_n \) of the first \( n \) terms of a geometric series is given by: \[ S_n = a \frac{1 - r^n}{1 - r} \] Substituting \( a = 1 \), \( r = 3 \), and \( n = 8 \) into the formula, we get: \[ S_8 = 1 \frac{1 - 3^8}{1 - 3} = \frac{1 - 3^8}{-2} \] Calculating \( 3^8 \): \[ 3^8 = 6561 \] Now substituting this value back into our expression for \( S_8 \): \[ S_8 = \frac{1 - 6561}{-2} = \frac{-6560}{-2} = 3280 \] Now we can substitute \( S_8 \) back into our first equation: \[ \sum_{i=1}^{8} 5 \times 3^{i-1} = 5 \times 3280 = 16400 \] Thus, the exact answer for \( \sum_{i=1}^{8} 5 \times 3^{i-1} \) is: \[ \boxed{16400} \]
