Pregunta
upstudy study bank question image url

Score: \( 1 / 10 \) Penalty: 0.25 off Question Re-write the quadratic function below in Standard Form Show Examples

Ask by Moran Matthews. in the United States
Feb 19,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

To rewrite a quadratic function in standard form, follow these steps: 1. **Identify Coefficients**: Determine the values of \(a\), \(b\), and \(c\) in the quadratic equation \(f(x) = ax^2 + bx + c\). 2. **Complete the Square**: - Take half of the coefficient of \(x\) (which is \(b\)), square it, and add and subtract this value inside the equation. - This forms a perfect square trinomial. 3. **Rewrite the Function**: Express the quadratic in the form \(f(x) = a(x - h)^2 + k\), where \((h, k)\) is the vertex of the parabola. **Example**: For \(f(x) = x^2 + 4x + 3\): - Half of 4 is 2, squared is 4. - Rewrite as \(f(x) = (x + 2)^2 - 1\). So, the standard form is \(f(x) = (x + 2)^2 - 1\). If you have a specific quadratic function, I can help you convert it to standard form.

Solución

To rewrite a quadratic function in standard form, we typically express it in the form: \[ f(x) = a(x - h)^2 + k \] where \((h, k)\) is the vertex of the parabola, and \(a\) determines the direction and width of the parabola. ### Example 1: Let's take the quadratic function: \[ f(x) = x^2 + 4x + 3 \] **Step 1: Identify coefficients.** - Here, \(a = 1\), \(b = 4\), and \(c = 3\). **Step 2: Complete the square.** 1. Take half of the coefficient of \(x\) (which is \(4\)), square it, and add/subtract it inside the function: - Half of \(4\) is \(2\), and squaring it gives \(4\). 2. Rewrite the function: \[ f(x) = (x^2 + 4x + 4) - 4 + 3 \] \[ f(x) = (x + 2)^2 - 1 \] **Step 3: Write in standard form.** - The standard form is: \[ f(x) = 1(x + 2)^2 - 1 \] ### Example 2: Consider another quadratic function: \[ f(x) = 2x^2 - 8x + 6 \] **Step 1: Identify coefficients.** - Here, \(a = 2\), \(b = -8\), and \(c = 6\). **Step 2: Complete the square.** 1. Take half of \(-8\) (which is \(-4\)), square it, and add/subtract it: - Half of \(-8\) is \(-4\), and squaring it gives \(16\). 2. Rewrite the function: \[ f(x) = 2(x^2 - 4x + 16) - 16 + 6 \] \[ f(x) = 2(x - 4)^2 - 10 \] **Step 3: Write in standard form.** - The standard form is: \[ f(x) = 2(x - 4)^2 - 10 \] ### Summary To convert a quadratic function to standard form: 1. Identify coefficients \(a\), \(b\), and \(c\). 2. Complete the square. 3. Rewrite the function in the form \(f(x) = a(x - h)^2 + k\). If you have a specific quadratic function you would like to convert to standard form, please provide it, and I can assist you further!

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To rewrite a quadratic function in Standard Form, which is \( f(x) = a(x - h)^2 + k \), where \((h, k)\) is the vertex of the parabola, you'll want to complete the square. For instance, consider the function \( f(x) = x^2 + 6x + 5 \). First, you group the \( x \)-terms: \( f(x) = (x^2 + 6x) + 5 \). Then, you complete the square by taking half of the coefficient of \( x \) (which is 3), squaring it (to get 9), and adding/subtracting it. You'll get \( f(x) = (x^2 + 6x + 9 - 9) + 5 \), simplifying to \( f(x) = (x + 3)^2 - 4 \). Now, let's talk about a real-world application of quadratic functions! Imagine you're designing a rectangular garden and you want to maximize the area given a fixed perimeter. The dimensions of the garden can be expressed in the form of a quadratic equation, where the area, considered as \( A(x) = x(20 - 2x) \) (with 'x' being one side and '20' the total perimeter divided by two), can demonstrate how you can find the maximum area through vertex calculations. So, quadratic functions aren't just numbers on paper; they're practical tools for beautifying our backyards!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad