Pregunta
upstudy study bank question image url

Given the following function, (a) find the vertex; (b) determine whether there is a maximum or a minimum value, and find the value; (c) find the range; and (d) find the intervals on which the function is increasing and the intervals on which the function is decreasing. \( f(x)=x^{2}+10 x+24 \) (a) The vertex is \( (-5,-1) \). (Type an ordered pair, using integers or fractions.) (b) Determine whether the parabola has a maximum value or a minimum value and find the value. Select the correct choice below and fill in the answer box within your choice. (Type an integer or a fraction.) A. The parabola opens downward and has a maximum value of B. The parabola opens upward and has a minimum value of -1 (c) What is the range of \( f(x) \) ? The range of \( f(x) \) is [ \( -1, \infty \) ). (Type your answer in interval notation. Use integers or fractions for any numbers in the expression.) (d) On what interval is the function increasing? The function is increasing on \( [-5, \infty) \). (Type your answer in interval notation. Use integers or fractions for any numbers in the expression.)

Ask by Lowe Conner. in the United States
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

(a) Vertex: (–5, –1) (b) The parabola opens upward and has a minimum value of –1. (c) Range: [–1, ∞) (d) Function is increasing on: [–5, ∞)

Solución

We are given f(x) = x² + 10x + 24. Step (a): To find the vertex, use the formula for the x‑coordinate of the vertex, x = –b/(2a). Here, a = 1 and b = 10, so:   x = –10/(2·1) = –5. Now compute f(–5):   f(–5) = (–5)² + 10(–5) + 24 = 25 – 50 + 24 = –1. Thus, the vertex is (–5, –1). Step (b): Since a = 1 (which is positive), the parabola opens upward. This means the vertex represents the minimum point. Therefore, the function has a minimum value of –1. Step (c): Because the vertex is the minimum point and the parabola opens upward, the range starts at the minimum value –1 and extends to infinity. Thus, the range is [–1, ∞). Step (d): The function decreases when x is less than the x‑coordinate of the vertex and increases when x is greater than the x‑coordinate of the vertex. Since the vertex occurs at x = –5, the function is increasing for x ≥ –5. In interval notation, the function is increasing on [–5, ∞). Summary of Answers: (a) Vertex: (–5, –1) (b) The parabola opens upward and has a minimum value of –1. (c) Range: [–1, ∞) (d) Function is increasing on: [–5, ∞)

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

Given the function \( f(x) = x^2 + 10x + 24 \): (b) The parabola opens upward — like a happy smile! This means it has a minimum value at the vertex. Since we found the vertex at \( (-5, -1) \), the minimum value is \( -1 \). (c) For the range, since the function has a minimum at \( -1 \) and extends to positive infinity, the range is [ \( -1, \infty \) ). (d) The function increases to the right of the vertex, starting from \( -5 \) towards infinity. Therefore, it's increasing on the interval \( [-5, \infty) \). Now, let's jump into some fun facts! Did you know that parabolas, like the one you just completed, can model real-world situations, such as the trajectory of an object in motion? Just like how a thrown ball follows a curved path, its height can be represented by a quadratic function! If you're looking to delve deeper, check out "Quadratic Functions for Dummies"! It’s an accessible guide that breaks down the complexities of quadratics in a way that’s fun and engaging. Perfect for brushing up your skills!

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad