Pregunta
upstudy study bank question image url

Show that \( 2 x+1 \) is a factor of \( 6 x^{3}-5 x^{2}-12 x-4 \). Then find the roots of \( 6 x^{3}-5 x^{2}-12 x-4=0 \)

Ask by Montgomery Cervantes. in South Africa
Feb 04,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

\(2x + 1\) is a factor of \(6x^3 - 5x^2 - 12x - 4\). The roots of the equation \(6x^3 - 5x^2 - 12x - 4 = 0\) are \(x = -\frac{1}{2}\), \(x = 2\), and \(x = -\frac{2}{3}\).

Solución

To determine whether \( 2x + 1 \) is a factor of the polynomial \( 6x^3 - 5x^2 - 12x - 4 \) and to find all roots of the equation \( 6x^3 - 5x^2 - 12x - 4 = 0 \), follow these steps: ### 1. Verify that \( 2x + 1 \) is a Factor **Factor Theorem:** A polynomial \( P(x) \) has \( (ax + b) \) as a factor if and only if \( P\left(-\frac{b}{a}\right) = 0 \). For \( 2x + 1 \): \[ 2x + 1 = 0 \Rightarrow x = -\frac{1}{2} \] Evaluate \( P\left(-\frac{1}{2}\right) \): \[ P\left(-\frac{1}{2}\right) = 6\left(-\frac{1}{2}\right)^3 - 5\left(-\frac{1}{2}\right)^2 - 12\left(-\frac{1}{2}\right) - 4 \] \[ = 6\left(-\frac{1}{8}\right) - 5\left(\frac{1}{4}\right) + 6 - 4 \] \[ = -\frac{6}{8} - \frac{5}{4} + 2 \] \[ = -\frac{3}{4} - \frac{5}{4} + 2 = -2 + 2 = 0 \] Since \( P\left(-\frac{1}{2}\right) = 0 \), \( 2x + 1 \) is indeed a factor of \( P(x) \). ### 2. Factor the Polynomial Now, divide \( P(x) \) by \( 2x + 1 \) to find the other factors. **Polynomial Division:** \[ P(x) = (2x + 1)(6x^2 - 8x - 8) \] ### 3. Find the Remaining Roots Now, solve the quadratic equation \( 6x^2 - 8x - 8 = 0 \): First, simplify by dividing by 2: \[ 3x^2 - 4x - 4 = 0 \] Use the quadratic formula: \[ x = \frac{4 \pm \sqrt{(-4)^2 - 4 \cdot 3 \cdot (-4)}}{2 \cdot 3} \] \[ x = \frac{4 \pm \sqrt{16 + 48}}{6} \] \[ x = \frac{4 \pm \sqrt{64}}{6} \] \[ x = \frac{4 \pm 8}{6} \] Thus, the solutions are: \[ x = \frac{12}{6} = 2 \quad \text{and} \quad x = \frac{-4}{6} = -\frac{2}{3} \] ### 4. Summary of All Roots The roots of the equation \( 6x^3 - 5x^2 - 12x - 4 = 0 \) are: \[ x = -\frac{1}{2}, \quad x = 2, \quad \text{and} \quad x = -\frac{2}{3} \] **Final Answer:** Yes, \(2x + 1\) is a factor. The equation \(6x^3 - 5x^2 - 12x - 4 = 0\) has roots \(x = -\tfrac{1}{2}\), \(x = 2\), and \(x = -\tfrac{2}{3}\).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To show that \(2x + 1\) is a factor of \(6x^3 - 5x^2 - 12x - 4\), we can use polynomial long division or synthetic division. Let's start by determining \( x \) when \(2x + 1 = 0\): \[ 2x + 1 = 0 \implies 2x = -1 \implies x = -\frac{1}{2} \] Now, we substitute \(x = -\frac{1}{2}\) into the polynomial \(6x^3 - 5x^2 - 12x - 4\): \[ 6\left(-\frac{1}{2}\right)^3 - 5\left(-\frac{1}{2}\right)^2 - 12\left(-\frac{1}{2}\right) - 4 = 6\left(-\frac{1}{8}\right) - 5\left(\frac{1}{4}\right) + 6 - 4 \] \[ = -\frac{6}{8} - \frac{5}{4} + 6 - 4 = -\frac{3}{4} - \frac{5}{4} + 6 - 4 = -\frac{8}{4} + 2 = -2 + 2 = 0 \] Since substituting \(x = -\frac{1}{2}\) results in \(0\), this confirms that \(2x + 1\) is indeed a factor. Now, we perform synthetic division of \(6x^3 - 5x^2 - 12x - 4\) by \(2x + 1\) (or the root \(-\frac{1}{2}\)): \[ \begin{array}{r|rrrr} -\frac{1}{2} & 6 & -5 & -12 & -4 \\ & & -3 & 4 & 4 \\ \hline & 6 & -8 & -8 & 0 \\ \end{array} \] The result from synthetic division is \(6x^2 - 8x - 8\). We can now factor this quadratic: To factor \(6x^2 - 8x - 8\), we can either use the quadratic formula or factor it directly: Using the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{8 \pm \sqrt{(-8)^2 - 4 \cdot 6 \cdot (-8)}}{2 \cdot 6} \] \[ = \frac{8 \pm \sqrt{64 + 192}}{12} = \frac{8 \pm \sqrt{256}}{12} = \frac{8 \pm 16}{12} \] This gives us: \[ x = \frac{24}{12} = 2 \quad \text{and} \quad x = \frac{-8}{12} = -\frac{2}{3} \] Thus, the roots of the equation \(6x^3 - 5x^2 - 12x - 4 = 0\) are: 1. \(x = -\frac{1}{2}\) (from the factor \(2x + 1\)), 2. \(x = 2\), 3. \(x = -\frac{2}{3}\). In summary, the roots of the polynomial \(6x^3 - 5x^2 - 12x - 4 = 0\) are \(x = -\frac{1}{2}, 2, -\frac{2}{3}\).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad