Pregunta
Ben thinks that \( \sqrt{200} \) is between 14 and 15 . Which statement supports Ben's conclusion?
Ask by Cervantes Page. in the United States
Feb 04,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
\( \sqrt{200} \) is between 14 and 15 because \(14^2 = 196\) and \(15^2 = 225\), and 196 is less than 200, which is less than 225.
Solución
Ben's conclusion that \( \sqrt{200} \) is between 14 and 15 is supported by comparing the squares of 14 and 15 with 200. Here's the reasoning:
1. **Calculate \( 14^2 \):**
\[
14 \times 14 = 196
\]
So, \( 14^2 = 196 \).
2. **Calculate \( 15^2 \):**
\[
15 \times 15 = 225
\]
So, \( 15^2 = 225 \).
3. **Compare these squares with 200:**
\[
196 < 200 < 225
\]
This means:
\[
14^2 < 200 < 15^2
\]
Taking the square root of all parts of the inequality, we get:
\[
14 < \sqrt{200} < 15
\]
**Therefore, the statement that supports Ben's conclusion is:**
*Since \(14^2 = 196\) and \(15^2 = 225\), and \(196 < 200 < 225\), it follows that \(14 < \sqrt{200} < 15\).*
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Beyond the Answer
To support Ben's conclusion that \( \sqrt{200} \) is between 14 and 15, we can compare the squares of these two numbers to 200. Calculating: - \( 14^2 = 196 \) - \( 15^2 = 225 \) Since \( 196 < 200 < 225 \), this means that \( \sqrt{200} \) indeed falls between 14 and 15. Thus, Ben's estimate is correct!
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium