Responder
The fully factored form of \( 2x^{2}-4x-1 \) is \( 2\left(x - 1 + \frac{\sqrt{6}}{2}\right)\left(x - 1 - \frac{\sqrt{6}}{2}\right) \).
Solución
Solve the quadratic equation by following steps:
- step0: Solve using the quadratic formula:
\(2x^{2}-4x-1=0\)
- step1: Solve using the quadratic formula:
\(x=\frac{4\pm \sqrt{\left(-4\right)^{2}-4\times 2\left(-1\right)}}{2\times 2}\)
- step2: Simplify the expression:
\(x=\frac{4\pm \sqrt{\left(-4\right)^{2}-4\times 2\left(-1\right)}}{4}\)
- step3: Simplify the expression:
\(x=\frac{4\pm \sqrt{24}}{4}\)
- step4: Simplify the expression:
\(x=\frac{4\pm 2\sqrt{6}}{4}\)
- step5: Separate into possible cases:
\(\begin{align}&x=\frac{4+2\sqrt{6}}{4}\\&x=\frac{4-2\sqrt{6}}{4}\end{align}\)
- step6: Simplify the expression:
\(\begin{align}&x=\frac{2+\sqrt{6}}{2}\\&x=\frac{4-2\sqrt{6}}{4}\end{align}\)
- step7: Simplify the expression:
\(\begin{align}&x=\frac{2+\sqrt{6}}{2}\\&x=\frac{2-\sqrt{6}}{2}\end{align}\)
- step8: Rewrite:
\(x_{1}=\frac{2-\sqrt{6}}{2},x_{2}=\frac{2+\sqrt{6}}{2}\)
To fully factor the expression \( 2x^{2}-4x-1 \), we first need to find its roots by solving the equation \( 2x^{2}-4x-1=0 \).
### Step 1: Solve the quadratic equation
Using the quadratic formula, we find the roots:
\[
x_{1} = \frac{2 - \sqrt{6}}{2}, \quad x_{2} = \frac{2 + \sqrt{6}}{2}
\]
### Step 2: Rewrite the quadratic expression
The roots \( x_{1} \) and \( x_{2} \) can be used to express the quadratic in its factored form. The general form of a quadratic can be expressed as:
\[
a(x - x_{1})(x - x_{2})
\]
where \( a \) is the leading coefficient (which is 2 in this case).
### Step 3: Substitute the roots into the factored form
Substituting the roots into the factored form gives us:
\[
2\left(x - \frac{2 - \sqrt{6}}{2}\right)\left(x - \frac{2 + \sqrt{6}}{2}\right)
\]
### Step 4: Simplify the factors
This can be simplified further:
\[
2\left(x - 1 + \frac{\sqrt{6}}{2}\right)\left(x - 1 - \frac{\sqrt{6}}{2}\right)
\]
### Final Factored Form
Thus, the fully factored form of \( 2x^{2}-4x-1 \) is:
\[
2\left(x - 1 + \frac{\sqrt{6}}{2}\right)\left(x - 1 - \frac{\sqrt{6}}{2}\right)
\]
This represents the complete factorization of the quadratic expression.
Respondido por UpStudy AI y revisado por un tutor profesional

Explicar

Simplifique esta solución