Pregunta
upstudy study bank question image url

fully Factorise \( 2 x^{2}-4 x-1 \)

Ask by Wood Hart. in South Africa
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The fully factored form of \( 2x^{2}-4x-1 \) is \( 2\left(x - 1 + \frac{\sqrt{6}}{2}\right)\left(x - 1 - \frac{\sqrt{6}}{2}\right) \).

Solución

Solve the quadratic equation by following steps: - step0: Solve using the quadratic formula: \(2x^{2}-4x-1=0\) - step1: Solve using the quadratic formula: \(x=\frac{4\pm \sqrt{\left(-4\right)^{2}-4\times 2\left(-1\right)}}{2\times 2}\) - step2: Simplify the expression: \(x=\frac{4\pm \sqrt{\left(-4\right)^{2}-4\times 2\left(-1\right)}}{4}\) - step3: Simplify the expression: \(x=\frac{4\pm \sqrt{24}}{4}\) - step4: Simplify the expression: \(x=\frac{4\pm 2\sqrt{6}}{4}\) - step5: Separate into possible cases: \(\begin{align}&x=\frac{4+2\sqrt{6}}{4}\\&x=\frac{4-2\sqrt{6}}{4}\end{align}\) - step6: Simplify the expression: \(\begin{align}&x=\frac{2+\sqrt{6}}{2}\\&x=\frac{4-2\sqrt{6}}{4}\end{align}\) - step7: Simplify the expression: \(\begin{align}&x=\frac{2+\sqrt{6}}{2}\\&x=\frac{2-\sqrt{6}}{2}\end{align}\) - step8: Rewrite: \(x_{1}=\frac{2-\sqrt{6}}{2},x_{2}=\frac{2+\sqrt{6}}{2}\) To fully factor the expression \( 2x^{2}-4x-1 \), we first need to find its roots by solving the equation \( 2x^{2}-4x-1=0 \). ### Step 1: Solve the quadratic equation Using the quadratic formula, we find the roots: \[ x_{1} = \frac{2 - \sqrt{6}}{2}, \quad x_{2} = \frac{2 + \sqrt{6}}{2} \] ### Step 2: Rewrite the quadratic expression The roots \( x_{1} \) and \( x_{2} \) can be used to express the quadratic in its factored form. The general form of a quadratic can be expressed as: \[ a(x - x_{1})(x - x_{2}) \] where \( a \) is the leading coefficient (which is 2 in this case). ### Step 3: Substitute the roots into the factored form Substituting the roots into the factored form gives us: \[ 2\left(x - \frac{2 - \sqrt{6}}{2}\right)\left(x - \frac{2 + \sqrt{6}}{2}\right) \] ### Step 4: Simplify the factors This can be simplified further: \[ 2\left(x - 1 + \frac{\sqrt{6}}{2}\right)\left(x - 1 - \frac{\sqrt{6}}{2}\right) \] ### Final Factored Form Thus, the fully factored form of \( 2x^{2}-4x-1 \) is: \[ 2\left(x - 1 + \frac{\sqrt{6}}{2}\right)\left(x - 1 - \frac{\sqrt{6}}{2}\right) \] This represents the complete factorization of the quadratic expression.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To fully factorise the expression \( 2x^2 - 4x - 1 \), we can start by looking for two numbers that multiply to \( ac \) (where \( a = 2 \) and \( c = -1 \), thus \( ac = -2 \)) and add to \( b \) (where \( b = -4 \)). These numbers are \( -5 \) and \( 1 \). Rewrite the middle term: \[ 2x^2 - 5x + x - 1 \] Now group the terms: \[ (2x^2 - 5x) + (x - 1) \] Factor by grouping: \[ x(2x - 5) + 1(2x - 5) \] \[ (2x - 5)(x + 1) \] Since we originally had a factor of 2 outside, we can express the complete factorised form: \[ 2(2x - 5)(x + 1) \] So, the fully factorised form is \( 2(2x - 5)(x + 1) \). Be sure to check the factorization by expanding it back, and you’ll see it returns to the original polynomial!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad