Pregunta
upstudy study bank question image url

Systems of Equations Review solve \( \begin{array}{l}\begin{array}{l}2 x+18 y=22 \\ -x-9 y=-11\end{array} \\ \)\begin{tabular}{ll}\text { B I }\( \quad \text { u } \mid: \equiv \) \\ \hline\end{tabular}\end{array}

Ask by Griffin Stephens. in the United States
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The system of equations has infinitely many solutions.

Solución

Solve the system of equations \( 2x+18y=22;-x-9y=-11 \). Solve the system of equations by following steps: - step0: Solve using the substitution method: \(\left\{ \begin{array}{l}2x+18y=22\\-x-9y=-11\end{array}\right.\) - step1: Rearrange the terms: \(2x+18y=22\) - step2: Move the expression to the right side: \(2x=22-18y\) - step3: Divide both sides: \(\frac{2x}{2}=\frac{22-18y}{2}\) - step4: Divide the numbers: \(x=11-9y\) - step5: Calculate: \(\left(x,y\right) = \left(11-9y,y\right),y \in \mathbb{R}\) - step6: Alternative Form: \(\textrm{Infinitely many solutions}\) The system of equations \(2x+18y=22\) and \(-x-9y=-11\) has infinitely many solutions. This means that the lines represented by these equations are parallel and do not intersect, resulting in an infinite number of solutions.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To solve the system of equations, first, we can simplify one of the equations. The second equation, \(-x - 9y = -11\), can be rearranged to express \(x\) in terms of \(y\): \[ x = -9y + 11. \] Now, substitute this expression for \(x\) in the first equation \(2x + 18y = 22\): \[ 2(-9y + 11) + 18y = 22. \] This simplifies to: \[ -18y + 22 + 18y = 22. \] This shows that the equation holds for all values of \(y\), meaning the system has infinitely many solutions, which corresponds to a line. You can choose any value for \(y\), and plug it into \(x = -9y + 11\) to find a corresponding \(x\). For example, if we let \(y = 0\), we find \(x = 11\), giving us the point \((11, 0)\). Alternatively, if \(y = 1\), then \(x = 2\), giving us the point \((2, 1)\). All points of the form \(( -9y + 11, y )\) will be solutions to the original equations.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad