Find the difference quotient for the function \( f(x)=-10 x+2 \), and simplify it.
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
To find the difference quotient for the function \( f(x) = -10x + 2 \), we use the formula: \[ \frac{f(x+h) - f(x)}{h} \] First, calculate \( f(x+h) \): \[ f(x+h) = -10(x+h) + 2 = -10x - 10h + 2 \] Now, substitute \( f(x+h) \) and \( f(x) \) into the difference quotient: \[ \frac{(-10x - 10h + 2) - (-10x + 2)}{h} \] Simplifying the numerator: \[ = \frac{-10x - 10h + 2 + 10x - 2}{h} = \frac{-10h}{h} \] For \( h \neq 0 \), we can simplify this further: \[ = -10 \] Thus, the difference quotient for the function \( f(x) = -10x + 2 \) simplifies to \(-10\).