Pregunta
upstudy study bank question image url

7. The three vertices of a parallelogram ABCD are \( \mathrm{A}(-1,-2), \mathrm{B}(4,-1) \) and C \( (6,3) \). Find the coordinates of vertex D and find the area of parallelogram \( \mathbf{A B C D} \).

Ask by Erickson Fernandez. in India
Jan 11,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Vertex D is at (1, 2), and the area of parallelogram ABCD is 9 square units.

Solución

To find the coordinates of vertex D and the area of parallelogram ABCD, we can use the properties of a parallelogram. Given: - Vertex A: (-1, -2) - Vertex B: (4, -1) - Vertex C: (6, 3) Since ABCD is a parallelogram, the diagonals bisect each other. This means that the midpoint of diagonal AC will be the same as the midpoint of diagonal BD. Let's find the midpoint of diagonal AC: Midpoint of AC = ((-1 + 6)/2, (-2 + 3)/2) = (5/2, 1/2) Now, we need to find the coordinates of vertex D such that the midpoint of BD is (5/2, 1/2). Let the coordinates of vertex D be (x, y). Then, the midpoint of BD is ((4 + x)/2, (-1 + y)/2). Since the midpoint of BD is (5/2, 1/2), we can set up the following equations: ((4 + x)/2) = 5/2 (-1 + y)/2 = 1/2 Solving these equations will give us the coordinates of vertex D. Once we have the coordinates of vertex D, we can find the area of parallelogram ABCD using the formula for the area of a parallelogram: Area = |(x1 * y2 - x2 * y1)| where (x1, y1) and (x2, y2) are the coordinates of two adjacent vertices. Let's proceed with finding the coordinates of vertex D and then the area of parallelogram ABCD. Solve the system of equations by following steps: - step0: Solution: \(\left\{ \begin{array}{l}\frac{\left(4+x\right)}{2}=\frac{5}{2}\\\frac{\left(-1+y\right)}{2}=\frac{1}{2}\end{array}\right.\) - step1: Remove the parentheses: \(\left\{ \begin{array}{l}\frac{4+x}{2}=\frac{5}{2}\\\frac{-1+y}{2}=\frac{1}{2}\end{array}\right.\) - step2: Calculate: \(\left\{ \begin{array}{l}x=1\\y=2\end{array}\right.\) - step3: Check the solution: \(\left\{ \begin{array}{l}x=1\\y=2\end{array}\right.\) - step4: Rewrite: \(\left(x,y\right) = \left(1,2\right)\) The coordinates of vertex D are (1, 2). Now, let's find the area of parallelogram ABCD using the formula: Area = |(x1 * y2 - x2 * y1)| where (x1, y1) = (-1, -2) and (x2, y2) = (4, -1). Area = |(-1 * -1 - 4 * -2)| = |(1 + 8)| = |9| = 9 Therefore, the area of parallelogram ABCD is 9 square units.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find the coordinates of vertex D, we can use the property that the diagonals of a parallelogram bisect each other. The midpoint M of diagonal AC can be calculated as: \[ M = \left( \frac{-1 + 6}{2}, \frac{-2 + 3}{2} \right) = \left( \frac{5}{2}, \frac{1}{2} \right) \] The midpoint M of diagonal BD will also be the same. Setting the coordinates of B and D, we have: \[ M = \left( \frac{4 + x}{2}, \frac{-1 + y}{2} \right) \] Equating the midpoints: \[ \frac{4 + x}{2} = \frac{5}{2} \implies 4 + x = 5 \implies x = 1 \] \[ \frac{-1 + y}{2} = \frac{1}{2} \implies -1 + y = 1 \implies y = 2 \] Thus, the coordinates of vertex D are \( D(1, 2) \). Next, to find the area of the parallelogram ABCD, we can use the formula for the area based on the coordinates of its vertices: \[ \text{Area} = \frac{1}{2} \left| x_1y_2 + x_2y_3 + x_3y_4 + x_4y_1 - (y_1x_2 + y_2x_3 + y_3x_4 + y_4x_1) \right| \] Substituting the coordinates A(-1, -2), B(4, -1), C(6, 3), D(1, 2): \[ = \frac{1}{2} \left| (-1)(-1) + 4(3) + 6(2) + 1(-2) - (-2)(4) - (-1)(6) - 3(1) - 2(-1) \right| \] Calculating each term: \[ = \frac{1}{2} \left| 1 + 12 + 12 - 2 - (-8) - (-6) - 3 + 2 \right| \] \[ = \frac{1}{2} \left| 1 + 12 + 12 - 2 + 8 + 6 - 3 + 2 \right| \] \[ = \frac{1}{2} \left| 36 \right| = 18 \] So, the area of parallelogram ABCD is \( 18 \) square units.

preguntas relacionadas

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad