Pregunta
upstudy study bank question image url

Which of the following has no solution? \[ \{x \mid x \leq 0\} \text { and }[x \mid x \geq 0\} \] \( \{x \mid x<0\} \) and \( \{x \mid x>0\} \) \( [x \mid x \leq 0\} \) or \( [x \mid x \geq 0\} \)

Ask by Campos Beck. in the United States
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The pair with no solution is \( \{x \mid x < 0\} \) and \( \{x \mid x > 0\} \).

Solución

To determine which of the given sets has no solution, we need to analyze each pair of sets. 1. **First Pair: \( \{x \mid x \leq 0\} \) and \( \{x \mid x \geq 0\} \)** - The first set includes all values of \( x \) that are less than or equal to 0. - The second set includes all values of \( x \) that are greater than or equal to 0. - The intersection of these two sets is \( x = 0 \), which means there is a solution (specifically, \( x = 0 \)). 2. **Second Pair: \( \{x \mid x < 0\} \) and \( \{x \mid x > 0\} \)** - The first set includes all values of \( x \) that are strictly less than 0. - The second set includes all values of \( x \) that are strictly greater than 0. - There are no values of \( x \) that can satisfy both conditions simultaneously, so this pair has no solution. 3. **Third Pair: \( \{x \mid x \leq 0\} \) and \( \{x \mid x \geq 0\} \)** - This is similar to the first pair. The first set includes all values of \( x \) that are less than or equal to 0, and the second set includes all values of \( x \) that are greater than or equal to 0. - The intersection is again \( x = 0 \), which means there is a solution. ### Conclusion: The pair that has no solution is: \[ \{x \mid x < 0\} \text{ and } \{x \mid x > 0\} \]

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

In the case of \( \{x \mid x < 0\} \) and \( \{x \mid x > 0\} \), there is no solution because these two sets do not overlap at all. The first set includes all negative numbers, while the second set encompasses all positive numbers, leaving no possible values for \( x \) that would satisfy both conditions simultaneously. Similarly, when dealing with intervals like \( [x \mid x \leq 0\} \) or \( [x \mid x \geq 0\} \), while the second part does allow for zero, the 'or' condition allows for solutions that may be valid in one interval but not in the other. The important takeaway here is to always double-check the range of numbers you're working with to avoid confusion!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad