Which of the solution sets is all real numbers? \( |x|>-1 \) \( |x|<-1 \) \( |x|=-1 \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Beyond the Answer
The solution set for \( |x|>-1 \) includes all real numbers. This is because the absolute value of a number is always non-negative (greater than or equal to zero), so any real number will satisfy this inequality. On the other hand, \( |x|<-1 \) and \( |x|=-1 \) have solution sets that do not include any real numbers. The first inequality is impossible since an absolute value cannot be negative, and the second equality has no solution because an absolute value cannot equal a negative number.
