Given \( f(x)=x^{2}-4 x \), find \( \frac{f(x+h)-f(x)}{h} \) and simplify. Write all steps on your submission paper for full credit.
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


The Deep Dive
To find \( \frac{f(x+h)-f(x)}{h} \) for the function \( f(x) = x^2 - 4x \), we'll follow these steps: 1. **Calculate \( f(x+h) \)**: \[ f(x+h) = (x+h)^2 - 4(x+h) \] Expanding this, we get: \[ f(x+h) = x^2 + 2xh + h^2 - 4x - 4h \] 2. **Calculate \( f(x+h) - f(x) \)**: \[ f(x+h) - f(x) = (x^2 + 2xh + h^2 - 4x - 4h) - (x^2 - 4x) \] Simplifying this, we have: \[ f(x+h) - f(x) = 2xh + h^2 - 4h \] 3. **Divide by \( h \)**: Now, we find \( \frac{f(x+h) - f(x)}{h} \): \[ \frac{f(x+h) - f(x)}{h} = \frac{2xh + h^2 - 4h}{h} \] Simplifying by factoring out \( h \): \[ = \frac{h(2x + h - 4)}{h} = 2x + h - 4 \quad \text{(for \( h \neq 0 \))} \] 4. **Final result**: Hence, the simplified form of \( \frac{f(x+h) - f(x)}{h} \) is: \[ 2x + h - 4 \]
preguntas relacionadas
