Pregunta
upstudy study bank question image url

According to the principle of duality in set theory, if an identity involving union \( (\cup) \) and intersection \( (\cap) \) is true, then Select one: a. the same identity remains unchanged b. the identity is valid only for finite sets c. the identity remains valid when \( \cup \) and \( \cap \) are interchanged \( =\bigcirc \) d. the identity does not hold in general

Ask by Peterson Bryant. in Ghana
Feb 21,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

If an identity involving union (∪) and intersection (∩) is true, then the identity remains valid when ∪ and ∩ are interchanged.

Solución

The principle of duality in set theory states that if an identity is true, then the “dual” identity—obtained by interchanging ∪ (union) and ∩ (intersection)—is also true. Therefore, if an identity involving ∪ and ∩ is true, the identity remains valid when ∪ and ∩ are interchanged. The correct answer is: c. the identity remains valid when ∪ and ∩ are interchanged

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

Did you know that the principle of duality in set theory is a powerful tool that enhances not just mathematical rigor but also our understanding of relationships within sets? When you flip the symbols of union and intersection, you essentially unlock a parallel universe of identities! For example, De Morgan's laws beautifully demonstrate this duality. In real life, this principle plays a crucial role in fields like computer science, particularly in database query optimization. By understanding the duality of set operations, programmers can reframe problems and devise more efficient algorithms. So next time you're organizing your data or defining a query, think about how swapping union and intersection might simplify your task!

preguntas relacionadas

Latest Other Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad