Pregunta
upstudy study bank question image url

Question \( 3(3 \%) \) For question one above, suppose Plants 2 and 3 were decommissioned and replaced with an updated facility. The production capacity of this new Plant is constrained by the following equation: \( 9\left(x_{1}\right)^{2}+5\left(x_{2}\right)^{2} \leq 216 \). (a) Write a mathematical model for the updated optimization problem (remember now there are only Plant 1 and the new Plant). (Hand written submission) (b) Write a PyTorch's program that uses gradient descent to solve (a). Submit a single python file (no notebooks). The file extension is . Py.

Ask by Simmons Cummings. in Trinidad and Tobago
Feb 22,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

(a) Mathematical Model: - **Objective**: Maximize profit \( 20x₁ + 15x₂ \) - **Constraints**: - \( 9x₁² + 5x₂² \leq 216 \) - \( x₁ \geq 0 \), \( x₂ \geq 0 \) (b) PyTorch Gradient Descent Program: ```python import torch def main(): penalty_weight = 1000.0 p1, p2 = 20.0, 15.0 x = torch.tensor([1.0, 1.0], requires_grad=True) optimizer = torch.optim.SGD([x], lr=0.001) num_iters = 5000 for i in range(num_iters): optimizer.zero_grad() profit = p1 * x[0] + p2 * x[1] constraint_violation = 9*x[0]**2 + 5*x[1]**2 - 216.0 penalty = penalty_weight * torch.relu(constraint_violation)**2 loss = -profit + penalty loss.backward() optimizer.step() x.clamp_(min=0.0) if i % 500 == 0: print(f"Iter {i:4d}: x = {x.detach().numpy()}, profit = {profit.item():.4f}, loss = {loss.item():.4f}") print("Final solution:") print("x1 =", x[0].item(), "x2 =", x[1].item()) print("Profit =", (p1*x[0] + p2*x[1]).item()) print("Constraint:", 9*x[0]**2 + 5*x[1]**2) if __name__ == '__main__': main() ``` This program uses gradient descent to find the optimal production quantities for Plant 1 and the new facility while respecting the capacity constraint.

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Respondido por UpStudy AI y revisado por un tutor profesional

The Deep Dive

To tackle the optimization problem, let's paint a vivid picture of the situation, shall we? Imagine you're now only juggling the efforts of Plant 1 and this shiny, updated Plant! You’re looking to maximize the production while adhering to the new capacity constraint given by the equation \( 9(x_1)^2 + 5(x_2)^2 \leq 216 \). This translates to an objective function you need to maximize - perhaps profit or production output - subject to your new constraint. Your optimization model could be framed as: Maximize: \( f(x_1, x_2) \) Subject to: \( 9(x_1)^2 + 5(x_2)^2 \leq 216 \) Where \( x_1 \) and \( x_2 \) represent production levels at Plant 1 and the new Plant, respectively. Now for the programming potion! Crafting a PyTorch program involves setting up a neural optimizer, where you specify your parameters, the model (in this case, your functions), and then run the gradient descent. Here’s a quick snippet to get you started: ```python import torch # Parameters x1 = torch.tensor(1.0, requires_grad=True) x2 = torch.tensor(1.0, requires_grad=True) optimizer = torch.optim.SGD([x1, x2], lr=0.01) # Constraint and objective def objective(x1, x2): return -1 * (x1 + x2) # Hypothetical maximization problem def constraint(x1, x2): return 216 - (9 * x1**2 + 5 * x2**2) # Gradient descent for _ in range(1000): optimizer.zero_grad() if constraint(x1, x2) > 0: # Check the constraint obj = objective(x1, x2) obj.backward() optimizer.step() print(f'Optimal values: Plant 1: {x1.item()}, New Plant: {x2.item()}') ``` Feel free to modify the objective function according to the specific outputs you're interested in maximizing, and keep an eye on both the constraints and your results! Happy coding!

preguntas relacionadas

Latest Other Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad