Pregunta
upstudy study bank question image url

At \( 25^{\circ} \mathrm{C} \) calolum fluoride has a solubility product constant \( K_{\text {sp }}=3.0 \times 10^{-1 t} \). The solubility of \( \mathrm{CaF}_{2} \) at this temperature is _ moli

Ask by Coleman Grant. in the United States
Nov 13,2024

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The solubility of \( \text{CaF}_2 \) is approximately \( 0.9086 \times 10^{-\frac{1t}{3}} \) mol/L, where \( t \) is the temperature in degrees Celsius.

Solución

To find the solubility of calcium fluoride (\( \text{CaF}_2 \)) in terms of molarity, we start with the dissociation equation for \( \text{CaF}_2 \): \[ \text{CaF}_2 (s) \rightleftharpoons \text{Ca}^{2+} (aq) + 2 \text{F}^- (aq) \] Let \( s \) be the solubility of \( \text{CaF}_2 \) in mol/L. When \( \text{CaF}_2 \) dissolves, it produces: - \( s \) moles of \( \text{Ca}^{2+} \) - \( 2s \) moles of \( \text{F}^- \) The solubility product constant \( K_{sp} \) for \( \text{CaF}_2 \) is given by: \[ K_{sp} = [\text{Ca}^{2+}][\text{F}^-]^2 \] Substituting the concentrations in terms of \( s \): \[ K_{sp} = (s)(2s)^2 = s(4s^2) = 4s^3 \] Given that \( K_{sp} = 3.0 \times 10^{-1t} \), we can set up the equation: \[ 4s^3 = 3.0 \times 10^{-1t} \] To find \( s \), we rearrange the equation: \[ s^3 = \frac{3.0 \times 10^{-1t}}{4} \] \[ s^3 = 0.75 \times 10^{-1t} \] Now, we take the cube root of both sides: \[ s = \left(0.75 \times 10^{-1t}\right)^{1/3} \] Calculating this gives: \[ s = 0.75^{1/3} \times 10^{-\frac{1t}{3}} \] Now, we need to evaluate \( 0.75^{1/3} \): \[ 0.75^{1/3} \approx 0.9086 \] Thus, we have: \[ s \approx 0.9086 \times 10^{-\frac{1t}{3}} \] To express the solubility in terms of \( t \), we need the value of \( t \). However, since \( t \) is not specified, we can only express the solubility in terms of \( t \): \[ s \approx 0.9086 \times 10^{-\frac{1t}{3}} \text{ mol/L} \] If you have a specific value for \( t \), you can substitute it in to find the numerical solubility.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To determine the solubility of \( \mathrm{CaF}_2 \), we start with the dissociation equation for calcium fluoride: \[ \mathrm{CaF}_2 (s) \rightleftharpoons \mathrm{Ca}^{2+} (aq) + 2\mathrm{F}^- (aq) \] Let the solubility (in mol/L) of \( \mathrm{CaF}_2 \) be \( s \). Thus, at equilibrium, we have: - \( [\mathrm{Ca}^{2+}] = s \) - \( [\mathrm{F}^-] = 2s \) The solubility product is given by: \[ K_{sp} = [\mathrm{Ca}^{2+}][\mathrm{F}^-]^2 = s(2s)^2 = 4s^3 \] Setting this equal to the given \( K_{sp} \): \[ 4s^3 = 3.0 \times 10^{-1} \] Now solve for \( s \): \[ s^3 = \frac{3.0 \times 10^{-1}}{4} = 0.075 \] \[ s = (0.075)^{1/3} \approx 0.1975\, \text{mol/L} \] Thus, the solubility of \( \mathrm{CaF}_2 \) at \( 25^{\circ} \mathrm{C} \) is approximately 0.1975 mol/L.

preguntas relacionadas

Latest Chemistry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad