At \( 25^{\circ} \mathrm{C} \) calolum fluoride has a solubility product constant \( K_{\text {sp }}=3.0 \times 10^{-1 t} \). The solubility of \( \mathrm{CaF}_{2} \) at this temperature is _ moli
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Mind Expander
To determine the solubility of \( \mathrm{CaF}_2 \), we start with the dissociation equation for calcium fluoride: \[ \mathrm{CaF}_2 (s) \rightleftharpoons \mathrm{Ca}^{2+} (aq) + 2\mathrm{F}^- (aq) \] Let the solubility (in mol/L) of \( \mathrm{CaF}_2 \) be \( s \). Thus, at equilibrium, we have: - \( [\mathrm{Ca}^{2+}] = s \) - \( [\mathrm{F}^-] = 2s \) The solubility product is given by: \[ K_{sp} = [\mathrm{Ca}^{2+}][\mathrm{F}^-]^2 = s(2s)^2 = 4s^3 \] Setting this equal to the given \( K_{sp} \): \[ 4s^3 = 3.0 \times 10^{-1} \] Now solve for \( s \): \[ s^3 = \frac{3.0 \times 10^{-1}}{4} = 0.075 \] \[ s = (0.075)^{1/3} \approx 0.1975\, \text{mol/L} \] Thus, the solubility of \( \mathrm{CaF}_2 \) at \( 25^{\circ} \mathrm{C} \) is approximately 0.1975 mol/L.
