Pregunta
upstudy study bank question image url

Question 7 Consider the Quadratic function \( f(x)=-8(x-5)(x-3) \). Its vertex is:

Ask by Macdonald Thornton. in the United States
Dec 03,2024

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The vertex is at \( (4, 8) \).

Solución

To find the vertex of the quadratic function \( f(x) = -8(x-5)(x-3) \), we can first rewrite it in standard form. The vertex of a quadratic function in the form \( f(x) = a(x-h)^2 + k \) is given by the point \( (h, k) \). 1. **Expand the function**: \[ f(x) = -8(x-5)(x-3) \] First, we expand \( (x-5)(x-3) \): \[ (x-5)(x-3) = x^2 - 3x - 5x + 15 = x^2 - 8x + 15 \] Now, substitute this back into the function: \[ f(x) = -8(x^2 - 8x + 15) = -8x^2 + 64x - 120 \] 2. **Find the vertex**: The vertex \( x \)-coordinate can be found using the formula \( x = -\frac{b}{2a} \), where \( a = -8 \) and \( b = 64 \): \[ x = -\frac{64}{2 \cdot -8} = -\frac{64}{-16} = 4 \] 3. **Calculate the \( y \)-coordinate**: Now, substitute \( x = 4 \) back into the function to find the \( y \)-coordinate: \[ f(4) = -8(4-5)(4-3) = -8(-1)(1) = 8 \] Thus, the vertex of the quadratic function \( f(x) = -8(x-5)(x-3) \) is at the point \( (4, 8) \). **Final Answer**: The vertex is \( (4, 8) \).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

The vertex of a quadratic function in the form \( f(x) = a(x-h)(x-k) \) can be found at the midpoint between the roots. Here, the roots are \( x=5 \) and \( x=3 \). The x-coordinate of the vertex is \( \frac{5 + 3}{2} = 4 \). To find the y-coordinate, substitute \( x = 4 \) into the function: \( f(4) = -8(4-5)(4-3) = -8(-1)(1) = 8 \). Thus, the vertex is at the point \( (4, 8) \). Now, if you are solving related quadratic problems, remember that the vertex gives you the maximum or minimum value of the function, depending on whether the parabola opens upwards or downwards, which in this case is downwards since \( a = -8 \) is negative. When graphing quadratic functions, it’s important to identify the vertex, axis of symmetry, and intercepts. A common mistake is to overlook the sign of the leading coefficient. Here, since it's negative, the parabola opens downwards, leading to a maximum point at the vertex you calculated, rather than a minimum!

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad