Pregunta
upstudy study bank question image url

You and your friend are playing the following game: two fair six sided dice are rolled; if the total showing is divisible by 3 , you pay your friend \( \$ 30 \). How much should he pay you when the total is not divisible by 3 if you want to make the game fair? A fair game is one in which your expected winnings are \( \$ 0 \). Your Answer:

Ask by Lowe May. in the United States
Feb 18,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Your friend should pay you $15 when the total is not divisible by 3 to make the game fair.

Solución

Let X be the amount your friend pays you when the dice total is not divisible by 3. Step 1: Count the outcomes. When rolling two six-sided dice, there are 36 equally likely outcomes. Outcomes where the total is divisible by 3: • Sum of 3: 2 outcomes (1,2) and (2,1) • Sum of 6: 5 outcomes (1,5), (2,4), (3,3), (4,2), (5,1) • Sum of 9: 4 outcomes (3,6), (4,5), (5,4), (6,3) • Sum of 12: 1 outcome (6,6) Total outcomes = 2 + 5 + 4 + 1 = 12. Probability the total is divisible by 3 = 12/36 = 1/3. Probability the total is not divisible by 3 = 1 − 1/3 = 2/3. Step 2: Determine the expected value. You pay your friend $30 when the total is divisible by 3 and receive X dollars from your friend when it’s not. The expected value (E) for you:   E = (Probability not divisible by 3) × (Amount received) + (Probability divisible by 3) × (− Amount paid)   E = (2/3)X + (1/3)(−30) For a fair game, the expected value should equal 0:   (2/3)X − 10 = 0 Step 3: Solve for X.   (2/3)X = 10   X = 10 × (3/2)   X = 15 Thus, your friend should pay you $15 when the total is not divisible by 3 for the game to be fair.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To determine how much your friend should pay you when the total is not divisible by 3 to make the game fair, we first need to analyze the probabilities. When rolling two six-sided dice, there are a total of 36 possible outcomes. The sums that are divisible by 3 (3, 6, 9, 12) occur 12 times, while sums that are not divisible by 3 occur 24 times. For a fair game, we want the expected value to equal $0. Thus, we set up the equation based on your payments and winnings: \[ \frac{12}{36} \times (-30) + \frac{24}{36} \times x = 0. \] Solving this gives you \( x = 15 \). So, your friend should pay you $15 whenever the total is not divisible by 3. Happy gaming!

preguntas relacionadas

Latest Probability Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad