Pregunta
upstudy study bank question image url

Calculate the future value. (Round your answer to two decimal places. \[ =\$ 27,000, r=5 \% \text { compounded monthly, } t=7 \text { years } \]

Ask by Davison Potter. in the United States
Feb 18,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

El valor futuro es \$38,29.

Solución

Calculate or simplify the expression \( 27000*(1+0.05/12)^{12*7} \). Calculate the value by following steps: - step0: Calculate: \(27000\left(1+\frac{0.05}{12}\right)^{12\times 7}\) - step1: Divide the terms: \(27000\left(1+\frac{1}{240}\right)^{12\times 7}\) - step2: Add the numbers: \(27000\left(\frac{241}{240}\right)^{12\times 7}\) - step3: Multiply the numbers: \(27000\left(\frac{241}{240}\right)^{84}\) - step4: Simplify: \(27000\times \frac{241^{84}}{240^{84}}\) - step5: Rewrite the expression: \(120\times 225\times \frac{241^{84}}{240^{84}}\) - step6: Rewrite the expression: \(120\times 225\times \frac{241^{84}}{120^{84}\times 2^{84}}\) - step7: Reduce the numbers: \(225\times \frac{241^{84}}{120^{83}\times 2^{84}}\) - step8: Rewrite the expression: \(225\times \frac{241^{84}}{15^{83}\times 8^{83}\times 2^{84}}\) - step9: Rewrite the expression: \(15^{2}\times \frac{241^{84}}{15^{83}\times 8^{83}\times 2^{84}}\) - step10: Reduce the numbers: \(1\times \frac{241^{84}}{15^{81}\times 8^{83}\times 2^{84}}\) - step11: Multiply the fractions: \(\frac{241^{84}}{15^{81}\times 2^{333}}\) El valor futuro de $27,000 con una tasa de interés del 5% compuesta mensualmente durante 7 años es aproximadamente $38,286.97.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the future value (FV) when $27,000 is invested at an interest rate of 5% compounded monthly for 7 years, you can use the formula: \[ FV = P \left(1 + \frac{r}{n}\right)^{nt} \] Where: - \( P \) is the principal amount ($27,000), - \( r \) is the annual interest rate (0.05), - \( n \) is the number of times interest is compounded per year (12 for monthly), - \( t \) is the number of years (7). Plugging in the values: \[ FV = 27000 \left(1 + \frac{0.05}{12}\right)^{12 \times 7} \] \[ FV = 27000 \left(1 + 0.0041667\right)^{84} \] \[ FV = 27000 \left(1.0041667\right)^{84} \] \[ FV = 27000 \times 1.432364654 \] \[ FV \approx 38668.83 \] So, the future value is approximately **$38,668.83**. Now, let's explore some fun facts! Did you know that compounding can make a huge difference over time? Just by starting with a small investment and letting it grow, you can turn your initial amount into a considerably larger sum, simply because of the power of "interest on interest." It’s like planting a tree and watching it grow bigger and bigger each year! And if you're curious about the best investment strategies, consider diving into resources about compound interest and how it can work for you! Books like "The Intelligent Investor" by Benjamin Graham lay a foundational understanding of smart investing, while online platforms like Investopedia offer tons of articles and calculators to help you navigate your financial journey. Happy learning!

preguntas relacionadas

Latest Economics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad