Pregunta
upstudy study bank question image url

1 2 3 4 5 6 7 8. 9 10 Question 10. A farmer has \( \mathbf{2 0 0} \) rnetres of fencing with which to enclose three sides of a rectangular paddock, the fourth side of which is bounded by a river. If the dimensions of the paddock are as shown, what is the value of \( \boldsymbol{x} \) such that the enclosed area is a maximum?

Ask by Gardner Cook. in Australia
Feb 19,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

To maximize the area of the rectangular paddock, the length \( x \) parallel to the river should be 100 metres.

Solución

We are given a rectangular paddock, three sides of which must be fenced (the side along the river does not require fencing). Let x be the length of the side parallel to the river, and let y be the length of each of the two sides perpendicular to the river. Since the farmer has 200 metres of fencing, the total fence used is:   x + 2y = 200 Solve for y in terms of x:   2y = 200 − x ⟹ y = (200 − x) / 2 The area A of the paddock is given by:   A = x × y Substitute y:   A(x) = x × ((200 − x) / 2)      = (200x − x²) / 2 This is a quadratic function in x:   A(x) = –½x² + 100x Since the coefficient of x² is negative, the quadratic opens downward, and its maximum occurs at the vertex. The x-coordinate of the vertex is calculated as:   x = –b / (2a) Here, a = –½ and b = 100, so:   x = –100 / (2 × (–½)) = 100 Thus, to maximize the area, x must be 100 metres. For completeness, the corresponding value of y is:   y = (200 − 100) / 2 = 50 metres Therefore, the optimal dimensions for maximum area are x = 100 metres and y = 50 metres, giving a maximum area of:   A = 100 × 50 = 5000 square metres. Answer: x = 100 metres.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the value of \( x \) that maximizes the area of the rectangular paddock, we can set up the problem like this: The farmer has \( 200 \) meters of fencing to enclose three sides of a rectangle. Let the length parallel to the river be \( x \) and the two widths perpendicular to the river be \( y \). From the fencing constraint, we have: \[ x + 2y = 200 \] From this, we can express \( y \) in terms of \( x \): \[ y = \frac{200 - x}{2} \] The area \( A \) of the rectangle is given by: \[ A = x \cdot y = x \cdot \left(\frac{200 - x}{2}\right) = \frac{200x - x^2}{2} \] To maximize the area, we take the derivative of \( A \) with respect to \( x \), set it to zero, and solve for \( x \): \[ \frac{dA}{dx} = \frac{200 - 2x}{2} = 0 \] Solving this gives: \[ 200 - 2x = 0 \implies 2x = 200 \implies x = 100 \] Now, substitute \( x = 100 \) back to find \( y \): \[ y = \frac{200 - 100}{2} = 50 \] So, the dimensions that maximize the area are \( x = 100 \) meters and \( y = 50 \) meters, yielding a maximum area of: \[ A = 100 \cdot 50 = 5000 \text{ square meters} \] In conclusion, the value of \( x \) that maximizes the enclosed area is \( \mathbf{100} \) meters.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad