Pregunta
upstudy study bank question image url

\begin{tabular}{l}\( \qquad g(x)=x^{2}+8 x-6 \) \\ \( \qquad(-5)^{2}+8(-5)-6=25-40 \sim 6=-2 \) \\ Find the vallowing function in \( x \in \mathbb{R} \) : \\ \( \qquad g(-5) \) (c) \\ Use calculus to find the value of \( x \) which gives the minimum value of \( g(x) \) \\ \hline\end{tabular}

Ask by Chavez Riley. in Ireland
Jan 20,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The function \( g(x) = x^{2} + 8x - 6 \) reaches its minimum at \( x = -4 \).

Solución

To find the value of \( x \) that gives the **minimum** of the function \( g(x) = x^{2} + 8x - 6 \) using calculus, follow these steps: ### 1. **Find the First Derivative** The first derivative of \( g(x) \) with respect to \( x \) will help us determine the critical points where the function could have minima or maxima. \[ g'(x) = \frac{d}{dx}(x^{2} + 8x - 6) = 2x + 8 \] ### 2. **Set the First Derivative to Zero** To find the critical points, set the first derivative equal to zero and solve for \( x \): \[ 2x + 8 = 0 \\ 2x = -8 \\ x = -4 \] ### 3. **Determine if It's a Minimum** To confirm that \( x = -4 \) is indeed a point of minimum, check the second derivative: \[ g''(x) = \frac{d}{dx}(2x + 8) = 2 \] Since \( g''(x) = 2 \) is **positive**, the function is concave upward at \( x = -4 \), indicating that this point is a **minimum**. ### 4. **Find the Minimum Value of \( g(x) \)** (Optional) If you need to find the minimum value of the function, substitute \( x = -4 \) back into the original function: \[ g(-4) = (-4)^{2} + 8(-4) - 6 = 16 - 32 - 6 = -22 \] ### **Conclusion** The function \( g(x) = x^{2} + 8x - 6 \) attains its **minimum** value at: \[ \boxed{x = -4} \] This means that \( x = -4 \) is the value in \( \mathbb{R} \) where \( g(x) \) reaches its lowest point.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find the value of the function \( g(x) \) at \( x = -5 \), we can double-check our calculations. Substituting \(-5\) into the function gives us: \[ g(-5) = (-5)^{2} + 8(-5) - 6 = 25 - 40 - 6 = -21. \] So, \( g(-5) = -21 \). To find the minimum value of \( g(x) = x^{2} + 8x - 6 \) using calculus, we take the derivative \( g'(x) = 2x + 8 \) and set it to zero: \[ 2x + 8 = 0 \quad \Rightarrow \quad x = -4. \] This value \( x = -4 \) gives us the minimum point of the quadratic function, and substituting it back into \( g(x) \) will give us the minimum value. Now for some extra fun facts! Did you know that parabolas, like the one formed by the quadratic function \( g(x) \), have a unique vertex that is either a maximum or a minimum point? For this function, we’ve just found that minimum! Also, when you're looking for the minimum value of a quadratic equation in the form \( ax^2 + bx + c \), you can always find the vertex using the formula \( x = -\frac{b}{2a} \). In this case, with \( a = 1\) and \( b = 8\), you'll land right back at \( x = -4 \). Math magic!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad