Pregunta

\( y=\sinh (x) \)

Ask by Burton Hilton. in Greenland
Feb 20,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The hyperbolic sine function, \( y = \sinh(x) \), is defined as \( \sinh(x) = \frac{e^x - e^{-x}}{2} \). It is an odd function with key properties including: - **Derivative**: \( \frac{d}{dx} \sinh(x) = \cosh(x) \) - **Integral**: \( \int \sinh(x) dx = \cosh(x) + C \) - **Series Expansion**: \( \sinh(x) = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \cdots \) - **Inverse Function**: \( \text{arsinh}(x) = \ln(x + \sqrt{x^2 + 1}) \) - **Graph**: Symmetric about the origin, grows exponentially as \( x \) increases, and is smooth and continuous. This function is widely used in solving differential equations, describing physical phenomena like the shape of a hanging cable, and in various engineering applications.

Solución

y = sinh(x) is the hyperbolic sine function. It is defined using the exponential function as follows:   sinh(x) = (e^x – e^(–x)) / 2 Here are some key properties and facts about sinh(x): 1. Definition and Expression:   • sinh(x) = (e^x – e^(–x)) / 2   This definition expresses sinh(x) as the difference of two exponential functions divided by 2. 2. Derivative:   • The derivative of sinh(x) is cosh(x), where:     cosh(x) = (e^x + e^(–x)) / 2   Thus, d/dx [sinh(x)] = cosh(x). 3. Integral:   • The integral of sinh(x) is cosh(x) plus a constant:     ∫ sinh(x) dx = cosh(x) + C. 4. Series Expansion:   • The Maclaurin series expansion for sinh(x) is:     sinh(x) = x + (x^3)/3! + (x^5)/5! + (x^7)/7! + …   This infinite series converges for all x ∈ ℝ. 5. Inverse Function:   • The inverse hyperbolic sine function is denoted as arsinh(x) or sometimes as sinh⁻¹(x). Its expression is given by:     arcsinh(x) = ln(x + √(x² + 1)). 6. Graph Behavior:   • The function is odd: sinh(–x) = –sinh(x). This symmetry implies that its graph is symmetric with respect to the origin.   • As x → ∞, sinh(x) grows approximately as (e^x)/2, and as x → –∞ it behaves like –(e^(–x))/2.   • The graph of sinh(x) is smooth and continuous, with a characteristic S-shape due to its exponential components. 7. Applications:   • Hyperbolic functions like sinh(x) come up frequently in the solutions of differential equations, in describing the shape of a hanging cable (catenary), and in many areas of physics and engineering. These properties and characteristics make sinh(x) an important function in both pure and applied mathematics.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

Did you know that the hyperbolic sine function, \( \sinh(x) \), is closely related to the geometry of hyperbolas, much like the regular sine function relates to circles? It can be defined as \( \sinh(x) = \frac{e^x - e^{-x}}{2} \). This makes it super useful in the fields of mathematics and physics, particularly when modeling situations involving exponential growth and decay! In practical terms, \( \sinh(x) \) pops up in various applications such as calculating the shape of a hanging cable or chain, famously known as a catenary. It also plays a key role in areas like engineering, physics, and even in managing systems of equations in relativity! So next time you see \( \sinh(x) \), think about how this elegant function connects math to the real world!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad