Responder
The standard error is 4, and the 95% confidence interval for the mean grade is (47, 63).
Solución
To solve the problem, we will follow these steps:
### Step 1: Calculate the Standard Error (SE)
The standard error of the sample mean is calculated using the formula:
\[
SE = \frac{s}{\sqrt{n}}
\]
where:
- \( s \) is the sample standard deviation,
- \( n \) is the sample size.
Given:
- \( s = 22 \)
- \( n = 30 \)
Now, we can calculate the standard error.
### Step 2: Calculate the 95% Confidence Interval (CI)
The formula for the 95% confidence interval for the mean is:
\[
CI = \bar{x} \pm z \cdot SE
\]
where:
- \( \bar{x} \) is the sample mean,
- \( z \) is the z-value corresponding to the desired confidence level (for 95%, \( z \approx 1.96 \)),
- \( SE \) is the standard error calculated in Step 1.
Given:
- \( \bar{x} = 55 \)
Now, we will calculate both the standard error and the confidence interval.
Let's perform the calculations.
#### Calculate Standard Error
\[
SE = \frac{22}{\sqrt{30}}
\]
#### Calculate Confidence Interval
\[
CI = 55 \pm 1.96 \cdot SE
\]
Now, I will compute these values.
Calculate the value by following steps:
- step0: Calculate:
\(\frac{22}{\sqrt{30}}\)
- step1: Multiply by the Conjugate:
\(\frac{22\sqrt{30}}{\sqrt{30}\times \sqrt{30}}\)
- step2: Multiply the numbers:
\(\frac{22\sqrt{30}}{30}\)
- step3: Reduce the fraction:
\(\frac{11\sqrt{30}}{15}\)
Calculate or simplify the expression \( 55 + 1.96 * (22/\sqrt(30)) \).
Calculate the value by following steps:
- step0: Calculate:
\(55+1.96\left(\frac{22}{\sqrt{30}}\right)\)
- step1: Remove the parentheses:
\(55+1.96\times \frac{22}{\sqrt{30}}\)
- step2: Multiply the numbers:
\(55+\frac{1078}{25\sqrt{30}}\)
- step3: Calculate:
\(55+\frac{539\sqrt{30}}{375}\)
- step4: Reduce fractions to a common denominator:
\(\frac{55\times 375}{375}+\frac{539\sqrt{30}}{375}\)
- step5: Transform the expression:
\(\frac{55\times 375+539\sqrt{30}}{375}\)
- step6: Multiply the numbers:
\(\frac{20625+539\sqrt{30}}{375}\)
Calculate or simplify the expression \( 55 - 1.96 * (22/\sqrt(30)) \).
Calculate the value by following steps:
- step0: Calculate:
\(55-1.96\left(\frac{22}{\sqrt{30}}\right)\)
- step1: Remove the parentheses:
\(55-1.96\times \frac{22}{\sqrt{30}}\)
- step2: Multiply the numbers:
\(55-\frac{1078}{25\sqrt{30}}\)
- step3: Calculate:
\(55-\frac{539\sqrt{30}}{375}\)
- step4: Reduce fractions to a common denominator:
\(\frac{55\times 375}{375}-\frac{539\sqrt{30}}{375}\)
- step5: Transform the expression:
\(\frac{55\times 375-539\sqrt{30}}{375}\)
- step6: Multiply the numbers:
\(\frac{20625-539\sqrt{30}}{375}\)
### Step 1: Calculate the Standard Error (SE)
The standard error calculated is approximately:
\[
SE \approx 4.02
\]
### Step 2: Calculate the 95% Confidence Interval (CI)
Using the standard error, we can calculate the confidence interval:
- Upper limit:
\[
CI_{upper} = 55 + 1.96 \cdot SE \approx 55 + 1.96 \cdot 4.02 \approx 62.87
\]
- Lower limit:
\[
CI_{lower} = 55 - 1.96 \cdot SE \approx 55 - 1.96 \cdot 4.02 \approx 47.13
\]
Thus, the 95% confidence interval for the mean grade is approximately:
\[
(47.13, 62.87)
\]
### Final Answers
1. The standard error associated with the sample average is approximately **4** (Option B).
2. The 95% confidence interval for the mean grade is approximately **(47, 63)** (Option A).
Respondido por UpStudy AI y revisado por un tutor profesional

Explicar

Simplifique esta solución