Find the monthly payment \( R \) needed to have a sinking fund accumulate the future value \( A \). The yearly interest rate \( r \) and the time \( t \) in years are given below. Interest is compounded monthly. \( A=\$ 6,000 ; r=8 \% ; t=2 \) \( R=\$ \square \) (Round up thathe nearest cent.)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Mind Expander
To calculate the monthly payment \( R \) needed for a sinking fund that will accumulate to a future value \( A \) of $6,000 with an annual interest rate \( r \) of 8% over \( t \) of 2 years, we first need to convert the yearly interest rate to the monthly interest rate and determine the total number of payments. 1. **Convert Interest Rate and Time:** - Monthly interest rate \( i = \frac{r}{12} = \frac{0.08}{12} \approx 0.0066667 \) (or about 0.667% per month) - Total number of payments \( n = 12 \times t = 12 \times 2 = 24 \) 2. **Future Value of Annuity Formula:** The future value of a sinking fund (ordinary annuity) can be calculated using the formula: \[ A = R \times \frac{(1 + i)^n - 1}{i} \] Rearranging the formula to solve for \( R \): \[ R = \frac{A \times i}{(1 + i)^n - 1} \] 3. **Plug in the Values:** \[ R = \frac{6000 \times 0.0066667}{(1 + 0.0066667)^{24} - 1} \] Calculating \( (1 + 0.0066667)^{24} \): \[ (1.0066667)^{24} \approx 1.170262 \] Thus: \[ R = \frac{6000 \times 0.0066667}{1.170262 - 1} = \frac{40}{0.170262} \approx 234.474 \] Finally, rounding up to the nearest cent, the monthly payment \( R \) is approximately: \[ R \approx \$234.47 \] So, the answer is: \( R=\$ 234.47 \)
