Pregunta
upstudy study bank question image url

Given points \( P(-5,-1), R(-3,1), O(1,5), V(4,-7) \), and \( E(-2,-3) \), which of the following proves that \( \triangle P O V \sim \triangle P R E \) ? By the Distance Formula, \( P O=6 \sqrt{2}, P R=2 \sqrt{2}, P V=3 \sqrt{13} \), and \( P E= \) Since, \( \frac{P O}{P R}=\frac{P V}{P E}=\frac{3}{1}=3 \), and \( \angle P \cong \angle P \) by the Reflexive Property, \( \triangle P O V \sim \triangle P R E \) by Bi By the Distance Formula, \( P O=2 \sqrt{2}, P R=6 \sqrt{2}, P V=\sqrt{13} \), and \( P E=3 \downarrow \) Since, \( \frac{P O}{P R}=\frac{P V}{P E}=\frac{3}{1}=3 \), and \( \angle P \cong \angle P \) by the Reflexive Property, \( \triangle P O V \sim \triangle P R E \) by By the Distance Formula, \( P O=2 \sqrt{2}, P R=6 \sqrt{2}, P V=\sqrt{13} \), and \( P E=3 \downarrow \) Since, \( \frac{P O}{P R}=\frac{P V}{P E}=\frac{3}{1}=3 \), and \( \angle P \cong \angle P \) by the Reflexive Property, \( \triangle P O V \sim \triangle P R E \) by S. By the Distance Formula, \( P O=6 \sqrt{2}, P R=2 \sqrt{2}, P V=3 \sqrt{13} \), and \( P E= \) Since, \( \frac{P O}{P R}=\frac{P V}{P E}=\frac{3}{1}=3 \), and \( \angle P \cong \angle P \) by the Reflexive Property, \( \triangle P O V \sim \triangle P R E \) by S.

Ask by Allan Pearson. in the United States
Jan 13,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

To prove that \(\triangle P O V \sim \triangle P R E\), we use the Side-Angle-Side (SAS) Similarity Criterion. By calculating the distances and showing that the ratios of corresponding sides are equal with the included angles congruent, we conclude that the triangles are similar by SAS.

Solución

To prove that \(\triangle P O V \sim \triangle P R E\), we can use the **Side-Angle-Side (SAS) Similarity Criterion**. Here's how: 1. **Calculate the Distances Using the Distance Formula:** - **Distance \( P O \):** \[ P(-5, -1) \text{ to } O(1, 5) = \sqrt{(1 - (-5))^2 + (5 - (-1))^2} = \sqrt{6^2 + 6^2} = \sqrt{72} = 6\sqrt{2} \] - **Distance \( P R \):** \[ P(-5, -1) \text{ to } R(-3, 1) = \sqrt{(-3 - (-5))^2 + (1 - (-1))^2} = \sqrt{2^2 + 2^2} = \sqrt{8} = 2\sqrt{2} \] - **Distance \( P V \):** \[ P(-5, -1) \text{ to } V(4, -7) = \sqrt{(4 - (-5))^2 + (-7 - (-1))^2} = \sqrt{9^2 + (-6)^2} = \sqrt{117} = 3\sqrt{13} \] - **Distance \( P E \):** \[ P(-5, -1) \text{ to } E(-2, -3) = \sqrt{(-2 - (-5))^2 + (-3 - (-1))^2} = \sqrt{3^2 + (-2)^2} = \sqrt{13} \] 2. **Compare the Ratios of Corresponding Sides:** \[ \frac{P O}{P R} = \frac{6\sqrt{2}}{2\sqrt{2}} = 3 \] \[ \frac{P V}{P E} = \frac{3\sqrt{13}}{\sqrt{13}} = 3 \] Since \(\frac{P O}{P R} = \frac{P V}{P E}\), the ratios of the corresponding sides are equal. 3. **Verify the Included Angle:** Both triangles share \(\angle P\), which is congruent by the **Reflexive Property**. 4. **Apply the SAS Similarity Criterion:** Since two pairs of corresponding sides are in proportion and the included angles are congruent, by **SAS Similarity**, the triangles are similar. **Conclusion:** \[ \triangle P O V \sim \triangle P R E \quad \text{by SAS Similarity Criterion} \] **Final Statement:** By correctly calculating the side lengths (PO = 6√2, PR = 2√2, PV = 3√13, PE = √13), showing PO/PR = PV/PE = 3, and noting that ∠P is congruent by the Reflexive Property, we conclude that △POV ~ △PRE by SAS similarity.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To determine that \( \triangle P O V \sim \triangle P R E \), we rely on the Side-Angle-Side (SAS) similarity criterion, which requires that two sides of one triangle are in proportion to two sides of another triangle, along with the included angle being equal. Here, the ratios of the sides, calculated using the Distance Formula, confirm the relationship between the two triangles. In the Distance Formula approach, while computing distances, make sure to double-check calculations for accuracy! A common mistake is misidentifying which points to calculate distances between, potentially leading to incorrect ratios. It’s essential to use all the points given and derive distances carefully to ensure the ratios hold true for the proportional relationships required for similarity!

preguntas relacionadas

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad