Pregunta
upstudy study bank question image url

2. A company makes cereal boxes with a volume of \( 432 \frac{1}{4} \) cubic inches. The dimensions of one of the cereal boxes is shown. What is the width of the box? A. How can you find the volume of the cereal box? B. Complete the equation to find the volume of the cereal box. \( V=2 \times a \times b \) \( 432 \frac{1}{4}=\square \times w \times \square \) \( \frac{1729}{4}=\frac{\square}{\square} \times w \times \frac{\square}{1} \) \( \frac{1729}{4}=\frac{\square}{2} w \) \( w=\frac{\square}{\square} \times \frac{\square}{\square} \) 14in C. What is the width of the cereal box? Turn and Talk in Task 2 , if the width was given and the length was not, would the steps you used to find the length be different than the steps you used to find the width? Explain.

Ask by Joseph Osborne. in the United States
Feb 28,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The width of the cereal box is \( 15 \frac{7}{16} \) inches. If the width were given and the length were unknown, the steps to find the length would be the same: use the volume formula and rearrange it to solve for the missing dimension.

Solución

To solve the problem, let's break it down step by step. ### A. How can you find the volume of the cereal box? The volume \( V \) of a rectangular box can be calculated using the formula: \[ V = l \times w \times h \] where \( l \) is the length, \( w \) is the width, and \( h \) is the height of the box. ### B. Complete the equation to find the volume of the cereal box. We are given that the volume of the cereal box is \( 432 \frac{1}{4} \) cubic inches. First, let's convert this mixed number into an improper fraction: \[ 432 \frac{1}{4} = \frac{432 \times 4 + 1}{4} = \frac{1728 + 1}{4} = \frac{1729}{4} \] Now, we can complete the equation: \[ V = 2 \times a \times b \] Assuming \( a \) and \( b \) are the dimensions of the base of the box, we can express the volume as: \[ \frac{1729}{4} = 2 \times w \times h \] This implies: \[ \frac{1729}{4} = \frac{2}{1} \times w \times \frac{h}{1} \] Now, we can simplify this to: \[ \frac{1729}{4} = \frac{2h}{1} \times w \] ### C. What is the width of the cereal box? To find the width \( w \), we can rearrange the equation: \[ w = \frac{\frac{1729}{4}}{\frac{2h}{1}} = \frac{1729}{4} \times \frac{1}{2h} = \frac{1729}{8h} \] Now, we need to know the height \( h \) to calculate \( w \). If we assume \( h = 14 \) inches (as mentioned in the problem), we can substitute this value into the equation: \[ w = \frac{1729}{8 \times 14} \] Now, let's calculate \( w \): \[ w = \frac{1729}{112} \] Now, we will perform the calculation to find the width \( w \). Calculate the value by following steps: - step0: Calculate: \(\frac{1729}{112}\) - step1: Reduce the fraction: \(\frac{247}{16}\) The width \( w \) of the cereal box is calculated to be: \[ w = \frac{1729}{112} = 15 \frac{7}{16} \text{ inches} \quad \text{or} \quad 15.4375 \text{ inches} \] ### Conclusion - The width of the cereal box is \( 15 \frac{7}{16} \) inches. ### Discussion on the Steps If the width was given and the length was not, the steps to find the length would be similar. You would still use the volume formula \( V = l \times w \times h \) and rearrange it to solve for \( l \): \[ l = \frac{V}{w \times h} \] The process of rearranging the formula and substituting known values would remain consistent, regardless of which dimension is unknown.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

Understanding the evolution of packaging can be quite fascinating! Cereal boxes today are streamlined not just for volume but for shelf appeal and storage efficiency. Back in the 1950s, cereal packaging was primarily designed for bulkiness and protection rather than aesthetics. Fun fact: the introduction of bright, cartoon mascots drastically changed how cereals were marketed to children, changing breakfast preferences entirely! When it comes to practical applications, knowing how to calculate volume is invaluable not just for cereal boxes, but for many real-life scenarios! For instance, if you’re planning a garden and want to know how much soil you need, you’d be calculating volume. Understanding the principles of measurement allows one to efficiently use space, whether in home organization, storage solutions, or even when packing for a trip!

preguntas relacionadas

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad