\( \begin{array}{ll}\text { a. } 2 \times \frac{3}{5}= & \text { b. } 4 \times \frac{5}{6}= \\ \text { c. } 11 \times \frac{3}{10}= & \text { d. } 9 \times \frac{1}{2}= \\ \)\begin{tabular}{ll}\text { e. }\( \frac{2}{3} \times 2= \) & \( 8 \times \frac{6}{7}= \) \\ \hline\end{tabular} & \begin{tabular}{l}\text { f. } 8 \\ \hline\end{tabular}\end{array}
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Bonus Knowledge
When multiplying a whole number by a fraction, you can think of it as taking a certain number of parts from the whole. For instance, \( 2 \times \frac{3}{5} = \frac{6}{5} \), which can also be understood as taking two pieces of a pie that is cut into five equal slices, giving you one and one-fifth pieces. In real-world applications, knowing how to multiply fractions can be incredibly helpful! For example, if you're cooking and a recipe calls for \( \frac{3}{5} \) of a cup of sugar and you want to make double the recipe, you’d need \( 2 \times \frac{3}{5} \) cups of sugar, which equals \( \frac{6}{5} \) cups, or one and one-fifth cups. Happy cooking!
