Pregunta
upstudy study bank question image url

33. Anne invested \( \$ 1000 \) in an account with a \( 1.3 \% \) annual interest rate. She made no deposits or withdrawals on the account for 2 years. If interest was compounded annually, which equation represents the balance in the account after the 2 years?. A. \( A=1000(1-0.013)^{2} \) B. \( A=1000(1+0.013)^{2} \) C. \( A=1000(1-1.3)^{2} \) D. \( A=1000(1+1.3)^{2} \)

Ask by Gray Malone. in the United States
Feb 22,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The correct equation is \( A = 1000(1 + 0.013)^2 \), which is option B.

Solución

The formula for compound interest is given by A = P(1 + r)^n, where P is the principal, r is the decimal form of the interest rate, and n is the number of years. Here, P = 1000, r = 0.013 (since 1.3% = 0.013), and n = 2. Therefore, the correct equation is A = 1000(1 + 0.013)^2, which corresponds with option B.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the correct equation representing the balance in Anne's account after 2 years with compounded interest, we use the formula for compound interest: \[ A = P(1 + r)^t \] Here, \( P \) is the principal amount (\$1000), \( r \) is the annual interest rate (1.3% or 0.013), and \( t \) is the number of years (2). So, the correct equation is: **B. \( A = 1000(1 + 0.013)^{2} \)** This formula takes into account the growth of the investment due to interest accumulation each year. For those looking to maximize their investment, understanding how compounding works can be a game changer! For instance, if Anne continued to leave her money in the account for more years, she would benefit even more from the magic of compounding. Time is truly an investor's best friend! If you're curious about how different interest rates would affect her investment over time, you might want to play around with some scenarios using online calculators. They can help visualize how small differences in interest rates lead to big changes in your outcome over the long run. Happy investing!

Latest Arithmetic Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad