Responder
Voici les solutions simplifiées pour les systèmes d'équations et les équations demandées :
### Systèmes d'équations
1. \( x + y = -1 \) et \( x y = -1 \):
- Solutions: \( (x, y) = (-1, 1) \) et \( (1, -1) \)
2. \( \frac{x^2}{y} + \frac{y^2}{x} = 0 \) et \( x y = -1 \):
- Solutions: \( (x, y) = (-1, 1) \) et \( (1, -1) \)
3. \( x^2 + y^2 = 5 \) et \( x y = -2 \):
- Solutions: \( (x, y) = (-1, 2) \), \( (-2, 1) \), \( (1, -2) \), \( (2, -1) \)
4. \( x^4 + y^4 = 17 \) et \( x y = 2 \):
- Solutions: \( (x, y) = (-1, -2) \), \( (-2, -1) \), \( (1, 2) \), \( (2, 1) \)
5. \( x^2 + y^2 = 20 \) et \( \frac{x}{y} + \frac{y}{x} = \frac{5}{2} \):
- Solutions: \( (x, y) = (-2, -4) \), \( (-4, -2) \), \( (2, 4) \), \( (4, 2) \)
6. \( x - y = 2 \) et \( x y = 35 \):
- Solutions: \( (x, y) = (-5, -7) \) et \( (7, 5) \)
### Équations
1. \( 2 x|x| - 6 x - 2 = 0 \):
- Solutions: \( x = -\frac{3 + \sqrt{5}}{2} \), \( x = \frac{-3 + \sqrt{5}}{2} \), \( x = \frac{3 + \sqrt{13}}{2} \)
2. \( 2 x^2 - 3 x + 5 = |x - 1| \):
- Aucune solution réelle
Si vous avez besoin de plus d'informations ou d'autres questions, n'hésitez pas à demander !
Solución
Solve the equation by following steps:
- step0: Solve for \(x\):
\(2x^{2}-3x+5=\left|x-1\right|\)
- step1: Move the expression to the left side:
\(2x^{2}-3x+5-\left|x-1\right|=0\)
- step2: Separate into possible cases:
\(\begin{align}&2x^{2}-3x+5-\left(x-1\right)=0,x-1\geq 0\\&2x^{2}-3x+5-\left(-\left(x-1\right)\right)=0,x-1<0\end{align}\)
- step3: Solve the equation:
\(\begin{align}&x \notin \mathbb{R},x\geq 1\\&x \notin \mathbb{R},x<1\end{align}\)
- step4: Find the intersection:
\(\begin{align}&x \notin \mathbb{R}\\&x \notin \mathbb{R}\end{align}\)
- step5: Find the union:
\(x \notin \mathbb{R}\)
Solve the system of equations \( x^{4}+y^{4}=17;xy=2 \).
Solve the system of equations by following steps:
- step0: Solve using the substitution method:
\(\left\{ \begin{array}{l}x^{4}+y^{4}=17\\xy=2\end{array}\right.\)
- step1: Solve the equation:
\(\left\{ \begin{array}{l}x^{4}+y^{4}=17\\x=\frac{2}{y}\end{array}\right.\)
- step2: Substitute the value of \(x:\)
\(\left(\frac{2}{y}\right)^{4}+y^{4}=17\)
- step3: Simplify:
\(\frac{16+y^{8}}{y^{4}}=17\)
- step4: Cross multiply:
\(16+y^{8}=y^{4}\times 17\)
- step5: Simplify the equation:
\(16+y^{8}=17y^{4}\)
- step6: Move the expression to the left side:
\(16+y^{8}-17y^{4}=0\)
- step7: Factor the expression:
\(\left(2-y\right)\left(1-y\right)\left(1+y\right)\left(2+y\right)\left(1+y^{2}\right)\left(4+y^{2}\right)=0\)
- step8: Separate into possible cases:
\(2-y=0\cup 1-y=0\cup 1+y=0\cup 2+y=0\cup 1+y^{2}=0\cup 4+y^{2}=0\)
- step9: Solve the equation:
\(y=2\cup y=1\cup y=-1\cup y=-2\cup y \notin \mathbb{R}\cup y \notin \mathbb{R}\)
- step10: Find the union:
\(y=2\cup y=1\cup y=-1\cup y=-2\)
- step11: Rearrange the terms:
\(\left\{ \begin{array}{l}x=\frac{2}{y}\\y=2\end{array}\right.\cup \left\{ \begin{array}{l}x=\frac{2}{y}\\y=1\end{array}\right.\cup \left\{ \begin{array}{l}x=\frac{2}{y}\\y=-1\end{array}\right.\cup \left\{ \begin{array}{l}x=\frac{2}{y}\\y=-2\end{array}\right.\)
- step12: Calculate:
\(\left\{ \begin{array}{l}x=1\\y=2\end{array}\right.\cup \left\{ \begin{array}{l}x=2\\y=1\end{array}\right.\cup \left\{ \begin{array}{l}x=-2\\y=-1\end{array}\right.\cup \left\{ \begin{array}{l}x=-1\\y=-2\end{array}\right.\)
- step13: Calculate:
\(\left\{ \begin{array}{l}x=-1\\y=-2\end{array}\right.\cup \left\{ \begin{array}{l}x=-2\\y=-1\end{array}\right.\cup \left\{ \begin{array}{l}x=1\\y=2\end{array}\right.\cup \left\{ \begin{array}{l}x=2\\y=1\end{array}\right.\)
- step14: Check the solution:
\(\left\{ \begin{array}{l}x=-1\\y=-2\end{array}\right.\cup \left\{ \begin{array}{l}x=-2\\y=-1\end{array}\right.\cup \left\{ \begin{array}{l}x=1\\y=2\end{array}\right.\cup \left\{ \begin{array}{l}x=2\\y=1\end{array}\right.\)
- step15: Rewrite:
\(\left(x,y\right) = \left(-1,-2\right)\cup \left(x,y\right) = \left(-2,-1\right)\cup \left(x,y\right) = \left(1,2\right)\cup \left(x,y\right) = \left(2,1\right)\)
Solve the system of equations \( x-y=2;xy=35 \).
Solve the system of equations by following steps:
- step0: Solve using the substitution method:
\(\left\{ \begin{array}{l}x-y=2\\xy=35\end{array}\right.\)
- step1: Solve the equation:
\(\left\{ \begin{array}{l}x=2+y\\xy=35\end{array}\right.\)
- step2: Substitute the value of \(x:\)
\(\left(2+y\right)y=35\)
- step3: Simplify:
\(y\left(2+y\right)=35\)
- step4: Expand the expression:
\(2y+y^{2}=35\)
- step5: Move the expression to the left side:
\(2y+y^{2}-35=0\)
- step6: Factor the expression:
\(\left(y-5\right)\left(y+7\right)=0\)
- step7: Separate into possible cases:
\(\begin{align}&y-5=0\\&y+7=0\end{align}\)
- step8: Solve the equation:
\(\begin{align}&y=5\\&y=-7\end{align}\)
- step9: Calculate:
\(y=5\cup y=-7\)
- step10: Rearrange the terms:
\(\left\{ \begin{array}{l}x=2+y\\y=5\end{array}\right.\cup \left\{ \begin{array}{l}x=2+y\\y=-7\end{array}\right.\)
- step11: Calculate:
\(\left\{ \begin{array}{l}x=7\\y=5\end{array}\right.\cup \left\{ \begin{array}{l}x=-5\\y=-7\end{array}\right.\)
- step12: Calculate:
\(\left\{ \begin{array}{l}x=-5\\y=-7\end{array}\right.\cup \left\{ \begin{array}{l}x=7\\y=5\end{array}\right.\)
- step13: Check the solution:
\(\left\{ \begin{array}{l}x=-5\\y=-7\end{array}\right.\cup \left\{ \begin{array}{l}x=7\\y=5\end{array}\right.\)
- step14: Rewrite:
\(\left(x,y\right) = \left(-5,-7\right)\cup \left(x,y\right) = \left(7,5\right)\)
Solve the equation \( 2x|x|-6x-2=0 \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(2x\left|x\right|-6x-2=0\)
- step1: Separate into possible cases:
\(\begin{align}&2x\times x-6x-2=0,x\geq 0\\&2x\left(-x\right)-6x-2=0,x<0\end{align}\)
- step2: Solve the equation:
\(\begin{align}&\begin{align}&x=\frac{3+\sqrt{13}}{2}\\&x=\frac{3-\sqrt{13}}{2}\end{align},x\geq 0\\&\begin{align}&x=\frac{-3+\sqrt{5}}{2}\\&x=-\frac{3+\sqrt{5}}{2}\end{align},x<0\end{align}\)
- step3: Find the intersection:
\(\begin{align}&x=\frac{3+\sqrt{13}}{2}\\&x=\frac{-3+\sqrt{5}}{2}\\&x=-\frac{3+\sqrt{5}}{2}\end{align}\)
- step4: Rewrite:
\(x_{1}=-\frac{3+\sqrt{5}}{2},x_{2}=\frac{-3+\sqrt{5}}{2},x_{3}=\frac{3+\sqrt{13}}{2}\)
Solve the system of equations \( x^{2}+y^{2}=20;\frac{x}{y}+\frac{y}{x}=\frac{5}{2} \).
Solve the system of equations by following steps:
- step0: Solve using the substitution method:
\(\left\{ \begin{array}{l}x^{2}+y^{2}=20\\\frac{x}{y}+\frac{y}{x}=\frac{5}{2}\end{array}\right.\)
- step1: Solve the equation:
\(\left\{ \begin{array}{l}x^{2}+y^{2}=20\\x=\frac{y}{2}\cup x=2y\end{array}\right.\)
- step2: Evaluate:
\(\left\{ \begin{array}{l}x^{2}+y^{2}=20\\x=\frac{y}{2}\end{array}\right.\cup \left\{ \begin{array}{l}x^{2}+y^{2}=20\\x=2y\end{array}\right.\)
- step3: Calculate:
\(\left\{ \begin{array}{l}x=-2\\y=-4\end{array}\right.\cup \left\{ \begin{array}{l}x=2\\y=4\end{array}\right.\cup \left\{ \begin{array}{l}x=-4\\y=-2\end{array}\right.\cup \left\{ \begin{array}{l}x=4\\y=2\end{array}\right.\)
- step4: Rearrange the terms:
\(\left\{ \begin{array}{l}x=-2\\y=-4\end{array}\right.\cup \left\{ \begin{array}{l}x=-4\\y=-2\end{array}\right.\cup \left\{ \begin{array}{l}x=2\\y=4\end{array}\right.\cup \left\{ \begin{array}{l}x=4\\y=2\end{array}\right.\)
- step5: Check the solution:
\(\left\{ \begin{array}{l}x=-2\\y=-4\end{array}\right.\cup \left\{ \begin{array}{l}x=-4\\y=-2\end{array}\right.\cup \left\{ \begin{array}{l}x=2\\y=4\end{array}\right.\cup \left\{ \begin{array}{l}x=4\\y=2\end{array}\right.\)
- step6: Rewrite:
\(\left(x,y\right) = \left(-2,-4\right)\cup \left(x,y\right) = \left(-4,-2\right)\cup \left(x,y\right) = \left(2,4\right)\cup \left(x,y\right) = \left(4,2\right)\)
Solve the system of equations \( \frac{x^{2}}{y}+\frac{y^{2}}{x}=0;xy=-1 \).
Solve the system of equations by following steps:
- step0: Solve using the substitution method:
\(\left\{ \begin{array}{l}\frac{x^{2}}{y}+\frac{y^{2}}{x}=0\\xy=-1\end{array}\right.\)
- step1: Solve the equation:
\(\left\{ \begin{array}{l}\frac{x^{2}}{y}+\frac{y^{2}}{x}=0\\x=-\frac{1}{y}\end{array}\right.\)
- step2: Substitute the value of \(x:\)
\(\frac{\left(-\frac{1}{y}\right)^{2}}{y}+\frac{y^{2}}{-\frac{1}{y}}=0\)
- step3: Simplify:
\(\frac{1}{y^{3}}-y^{3}=0\)
- step4: Multiply both sides of the equation by LCD:
\(\left(\frac{1}{y^{3}}-y^{3}\right)y^{3}=0\times y^{3}\)
- step5: Simplify the equation:
\(1-y^{6}=0\)
- step6: Rewrite the expression:
\(-y^{6}=-1\)
- step7: Change the signs:
\(y^{6}=1\)
- step8: Simplify the expression:
\(y=\pm \sqrt[6]{1}\)
- step9: Simplify:
\(y=\pm 1\)
- step10: Separate into possible cases:
\(y=1\cup y=-1\)
- step11: Rearrange the terms:
\(\left\{ \begin{array}{l}x=-\frac{1}{y}\\y=1\end{array}\right.\cup \left\{ \begin{array}{l}x=-\frac{1}{y}\\y=-1\end{array}\right.\)
- step12: Calculate:
\(\left\{ \begin{array}{l}x=-1\\y=1\end{array}\right.\cup \left\{ \begin{array}{l}x=1\\y=-1\end{array}\right.\)
- step13: Check the solution:
\(\left\{ \begin{array}{l}x=-1\\y=1\end{array}\right.\cup \left\{ \begin{array}{l}x=1\\y=-1\end{array}\right.\)
- step14: Rewrite:
\(\left(x,y\right) = \left(-1,1\right)\cup \left(x,y\right) = \left(1,-1\right)\)
Solve the system of equations \( x+y=-1;xy=-1 \).
Solve the system of equations by following steps:
- step0: Solve using the substitution method:
\(\left\{ \begin{array}{l}x+y=-1\\xy=-1\end{array}\right.\)
- step1: Solve the equation:
\(\left\{ \begin{array}{l}x=-1-y\\xy=-1\end{array}\right.\)
- step2: Substitute the value of \(x:\)
\(\left(-1-y\right)y=-1\)
- step3: Simplify:
\(y\left(-1-y\right)=-1\)
- step4: Expand the expression:
\(-y-y^{2}=-1\)
- step5: Move the expression to the left side:
\(-y-y^{2}-\left(-1\right)=0\)
- step6: Remove the parentheses:
\(-y-y^{2}+1=0\)
- step7: Rewrite in standard form:
\(-y^{2}-y+1=0\)
- step8: Multiply both sides:
\(y^{2}+y-1=0\)
- step9: Solve using the quadratic formula:
\(y=\frac{-1\pm \sqrt{1^{2}-4\left(-1\right)}}{2}\)
- step10: Simplify the expression:
\(y=\frac{-1\pm \sqrt{5}}{2}\)
- step11: Separate into possible cases:
\(\begin{align}&y=\frac{-1+\sqrt{5}}{2}\\&y=\frac{-1-\sqrt{5}}{2}\end{align}\)
- step12: Rewrite the fraction:
\(\begin{align}&y=\frac{-1+\sqrt{5}}{2}\\&y=-\frac{1+\sqrt{5}}{2}\end{align}\)
- step13: Evaluate the logic:
\(y=\frac{-1+\sqrt{5}}{2}\cup y=-\frac{1+\sqrt{5}}{2}\)
- step14: Rearrange the terms:
\(\left\{ \begin{array}{l}x=-1-y\\y=\frac{-1+\sqrt{5}}{2}\end{array}\right.\cup \left\{ \begin{array}{l}x=-1-y\\y=-\frac{1+\sqrt{5}}{2}\end{array}\right.\)
- step15: Calculate:
\(\left\{ \begin{array}{l}x=-\frac{1+\sqrt{5}}{2}\\y=\frac{-1+\sqrt{5}}{2}\end{array}\right.\cup \left\{ \begin{array}{l}x=\frac{-1+\sqrt{5}}{2}\\y=-\frac{1+\sqrt{5}}{2}\end{array}\right.\)
- step16: Check the solution:
\(\left\{ \begin{array}{l}x=-\frac{1+\sqrt{5}}{2}\\y=\frac{-1+\sqrt{5}}{2}\end{array}\right.\cup \left\{ \begin{array}{l}x=\frac{-1+\sqrt{5}}{2}\\y=-\frac{1+\sqrt{5}}{2}\end{array}\right.\)
- step17: Rewrite:
\(\left(x,y\right) = \left(-\frac{1+\sqrt{5}}{2},\frac{-1+\sqrt{5}}{2}\right)\cup \left(x,y\right) = \left(\frac{-1+\sqrt{5}}{2},-\frac{1+\sqrt{5}}{2}\right)\)
Solve the system of equations \( x^{2}+y^{2}=5;xy=-2 \).
Solve the system of equations by following steps:
- step0: Solve using the substitution method:
\(\left\{ \begin{array}{l}x^{2}+y^{2}=5\\xy=-2\end{array}\right.\)
- step1: Solve the equation:
\(\left\{ \begin{array}{l}x^{2}+y^{2}=5\\x=-\frac{2}{y}\end{array}\right.\)
- step2: Substitute the value of \(x:\)
\(\left(-\frac{2}{y}\right)^{2}+y^{2}=5\)
- step3: Simplify:
\(\frac{4+y^{4}}{y^{2}}=5\)
- step4: Cross multiply:
\(4+y^{4}=y^{2}\times 5\)
- step5: Simplify the equation:
\(4+y^{4}=5y^{2}\)
- step6: Move the expression to the left side:
\(4+y^{4}-5y^{2}=0\)
- step7: Factor the expression:
\(\left(2-y\right)\left(1-y\right)\left(1+y\right)\left(2+y\right)=0\)
- step8: Separate into possible cases:
\(2-y=0\cup 1-y=0\cup 1+y=0\cup 2+y=0\)
- step9: Solve the equation:
\(y=2\cup y=1\cup y=-1\cup y=-2\)
- step10: Rearrange the terms:
\(\left\{ \begin{array}{l}x=-\frac{2}{y}\\y=2\end{array}\right.\cup \left\{ \begin{array}{l}x=-\frac{2}{y}\\y=1\end{array}\right.\cup \left\{ \begin{array}{l}x=-\frac{2}{y}\\y=-1\end{array}\right.\cup \left\{ \begin{array}{l}x=-\frac{2}{y}\\y=-2\end{array}\right.\)
- step11: Calculate:
\(\left\{ \begin{array}{l}x=-1\\y=2\end{array}\right.\cup \left\{ \begin{array}{l}x=-2\\y=1\end{array}\right.\cup \left\{ \begin{array}{l}x=2\\y=-1\end{array}\right.\cup \left\{ \begin{array}{l}x=1\\y=-2\end{array}\right.\)
- step12: Calculate:
\(\left\{ \begin{array}{l}x=-1\\y=2\end{array}\right.\cup \left\{ \begin{array}{l}x=-2\\y=1\end{array}\right.\cup \left\{ \begin{array}{l}x=1\\y=-2\end{array}\right.\cup \left\{ \begin{array}{l}x=2\\y=-1\end{array}\right.\)
- step13: Check the solution:
\(\left\{ \begin{array}{l}x=-1\\y=2\end{array}\right.\cup \left\{ \begin{array}{l}x=-2\\y=1\end{array}\right.\cup \left\{ \begin{array}{l}x=1\\y=-2\end{array}\right.\cup \left\{ \begin{array}{l}x=2\\y=-1\end{array}\right.\)
- step14: Rewrite:
\(\left(x,y\right) = \left(-1,2\right)\cup \left(x,y\right) = \left(-2,1\right)\cup \left(x,y\right) = \left(1,-2\right)\cup \left(x,y\right) = \left(2,-1\right)\)
Voici les solutions pour les systèmes d'équations et les équations demandées :
### Systèmes d'équations
1. Pour le système \( \left\{\begin{aligned} x+y & =-1 \\ x y & =-1\end{aligned}\right. \):
- Solutions :
\[
(x,y) = \left(-\frac{1+\sqrt{5}}{2}, \frac{-1+\sqrt{5}}{2}\right) \cup (x,y) = \left(\frac{-1+\sqrt{5}}{2}, -\frac{1+\sqrt{5}}{2}\right)
\]
2. Pour le système \( \left\{\begin{aligned} \frac{x^{2}}{y}+\frac{y^{2}}{x} & =0 \\ x y & =-1\end{aligned}\right. \):
- Solutions :
\[
(x,y) = (-1,1) \cup (x,y) = (1,-1)
\]
3. Pour le système \( \left\{\begin{aligned} x^{2}+y^{2} & =5 \\ x y & =-2\end{aligned}\right. \):
- Solutions :
\[
(x,y) = (-1,2) \cup (x,y) = (-2,1) \cup (x,y) = (1,-2) \cup (x,y) = (2,-1)
\]
4. Pour le système \( \left\{\begin{aligned} x^{4}+y^{4} & =17 \\ x y & =2\end{aligned}\right. \):
- Solutions :
\[
(x,y) = (-1,-2) \cup (x,y) = (-2,-1) \cup (x,y) = (1,2) \cup (x,y) = (2,1)
\]
5. Pour le système \( \left\{\begin{aligned} x^{2}+y^{2} & =20 \\ \frac{x}{y}+\frac{y}{x}=\frac{5}{2}\end{aligned}\right. \):
- Solutions :
\[
(x,y) = (-2,-4) \cup (x,y) = (-4,-2) \cup (x,y) = (2,4) \cup (x,y) = (4,2)
\]
6. Pour le système \( \left\{\begin{aligned} x-y & =2 \\ x y & =35\end{aligned}\right. \):
- Solutions :
\[
(x,y) = (-5,-7) \cup (x,y) = (7,5)
\]
### Équations
1. Pour l'équation \( 2 x|x|-6 x-2=0 \):
- Solutions :
\[
x_{1}=-\frac{3+\sqrt{5}}{2}, \quad x_{2}=\frac{-3+\sqrt{5}}{2}, \quad x_{3}=\frac{3+\sqrt{13}}{2}
\]
2. Pour l'équation \( 2 x^{2}-3 x+5=|x-1| \):
- Il n'y a pas de solution réelle :
\[
x \notin \mathbb{R \text{ (pas de solution réelle)}}
\]
Si vous avez besoin de plus d'informations ou d'autres questions, n'hésitez pas à demander !
Respondido por UpStudy AI y revisado por un tutor profesional

Explicar

Simplifique esta solución