Pregunta
upstudy study bank question image url

24. Is this parallelogram a rectangle, a rhombus, both, or neither? 225. The unit circle and \( \odot C \) with a radius of \( r \) are concentric. Circle \( D \) with a radius of \( s \) is centered at \( (8,0) \). If circles \( C \) and \( D \) touch at one point, write all possible relations between \( r \) and \( s \).

Ask by Powers Norris. in the United States
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

**Problem 24:** The parallelogram is neither a rectangle nor a rhombus. **Problem 225:** For circles C and D to touch at one point, the radii r and s must satisfy either \( r + s = 8 \) or \( |r - s| = 8 \).

Solución

Below are one acceptable set of answers for the two problems. ───────────────────────────── Problem 24. ───────────────────────────── We are asked whether “this parallelogram” is a rectangle, a rhombus, both, or neither. (A rectangle is a parallelogram in which all angles are 90°; a rhombus is one in which all four sides are congruent.) From the given information or diagram (which shows that the angles are not 90° and the sides are not all equal), one concludes that the parallelogram does not have the extra properties to be a rectangle or a rhombus. Answer for Problem 24: The parallelogram is neither a rectangle nor a rhombus. ───────────────────────────── Problem 225. ───────────────────────────── We are told that there are two circles sharing the same center (the unit circle and circle C, which has radius r) and a third circle D (with center at (8,0) and radius s). (The unit circle is mentioned only to indicate that circle C is concentric with a fixed circle; the important circles for tangency are C and D.) The distance between the centers of circles C and D is 8 (since circle C is centered at (0,0) and circle D is at (8,0)). Two circles touch at exactly one point (are tangent) when the distance between their centers is either the sum or the absolute difference of their radii. Thus we must have   either r + s = 8       (External Tangency)   or  |r – s| = 8       (Internal Tangency). In other words, this gives the two cases:  Case 1 (external tangency): r + s = 8.  Case 2 (internal tangency): either r – s = 8 or s – r = 8. (Recall that since r and s are radii, both must be positive.) Answer for Problem 225: In order for circles C and D to touch, either  r + s = 8   or  |r – s| = 8  —that is, either r + s = 8 or r – s = 8 (if r > s) or s – r = 8 (if s > r). ───────────────────────────── Note: There are many ways to state the answer for Problem 225; the key point is to recognize that the condition for two circles to be tangent is that the distance between their centers equals either the sum or the difference of their radii.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

In the world of geometry, we find shapes like parallelograms that love to hang out, but sometimes they like to dress up as rectangles or rhombuses! If all angles are right angles, it’s a rectangle. If all sides are equal, it’s a rhombus. And if they are both, well, congratulations, you’ve got a square! If neither condition is met, then it’s just your good old parallelogram. When dealing with two concentric circles, things can get a little tricky. For circles \( C \) and \( D \) to touch at one point, the distance between their centers must equal the sum or the difference of their radii. So, if the center of circle \( C \) is at the origin (0,0), the condition can be expressed as: \( r + s = 8 \) (externally tangent) or \( |r - s| = 8 \) (internally tangent). Now go on, explore those relationships!

preguntas relacionadas

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad