Pregunta
upstudy study bank question image url

How long will it take for an investment of 4,000 dollars to double if: a. the interest rate is \( 10 \% \) per year, compounded continuously? (Round your answer to three decimal places) b. the interest rate is \( 8.5 \% \) per year, compounded monthly? (Enter your answer as a whole number of years and months. Round months up to the nearest month where interest is earned. Both blanks must be correct to receive credit.)

Ask by Wood Gross. in the United States
Feb 18,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

It will take approximately 6.931 years for the investment to double at a 10% annual interest rate compounded continuously. At an 8.5% annual interest rate compounded monthly, it will take about 8 years and 3 months for the investment to double.

Solución

We are given an initial investment of $4,000 that is doubled (so the final amount is $8,000). Let P = 4,000 and A = 8,000. The formulas and steps needed for each part are as follows: ───────────────────────────── Part (a): Continuous Compounding For continuous compounding, the formula is:   A = P · e^(rt) When the investment doubles, A/P = 2. So,   2 = e^(rt) Taking the natural logarithm of both sides gives:   ln(2) = rt  ⇒  t = ln(2)/r Here, the annual interest rate is 10% or r = 0.10. Substituting, we get:   t = ln(2)/0.10 Calculating using ln(2) ≈ 0.693147,   t ≈ 0.693147 / 0.10 = 6.93147 years Rounded to three decimal places, t ≈ 6.931 years. ───────────────────────────── Part (b): Monthly Compounding For monthly compounding, the formula is:   A = P · (1 + r/12)^(12t) Again setting A/P = 2 and r = 0.085, we have:   2 = (1 + 0.085/12)^(12t) Taking the natural logarithm of both sides:   ln(2) = 12t · ln(1 + 0.085/12) Solve for t:   t = ln(2) / [12 · ln(1 + 0.085/12)] First calculate the monthly rate:   0.085/12 ≈ 0.00708333 Now compute ln(1 + 0.00708333). Using a calculator,   ln(1.00708333) ≈ 0.00705869 Then,   12 · ln(1.00708333) ≈ 12 × 0.00705869 ≈ 0.08470428 Now,   t ≈ 0.693147 / 0.08470428 ≈ 8.1767 years We now convert the decimal part of the year into months.   Decimal part = 0.1767 years   0.1767 × 12 ≈ 2.1204 months Since you are asked to round the months up to the nearest month where interest is earned, round 2.1204 months up to 3 months. Thus, the investment will approximately double in 8 years and 3 months. ───────────────────────────── Final Answers: a. 6.931 years b. 8 years and 3 months

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find out how long it will take for your investment to double, we can use two different formulas based on the type of compounding. For continuous compounding at a \( 10\% \) interest rate: The formula we use is \( t = \frac{\ln(2)}{r} \), where \( r \) is the interest rate. Plugging in the numbers: \[ t = \frac{\ln(2)}{0.10} \approx 6.931 \] So, it will take approximately \( 6.931 \) years, which rounds to **6.931 years**. For monthly compounding at an \( 8.5\% \) interest rate: The formula we can use is \( t = \frac{\ln(2)}{m \cdot \ln(1 + \frac{r}{m})} \), where \( m \) is the frequency of compounding per year. Here, \( r = 0.085 \) and \( m = 12 \): 1. First, calculate \( \frac{r}{m} = \frac{0.085}{12} \approx 0.0070833 \) 2. Next, find \( \ln(1 + 0.0070833) \approx 0.0070796 \) Now we can substitute these values into the formula: \[ t = \frac{\ln(2)}{12 \cdot 0.0070796} \approx \frac{0.6931}{0.084955} \approx 8.166 \] This means it will take approximately \( 8 \) years and about \( 2 \) months (since we round up for the months). Thus, the final answer is **8 years and 2 months**.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad