Responder
Here are the solutions for each equation:
(e) \( x = 4 \)
(f) \( x = 5 \)
(h) \( x = 0 \)
(i) \( x = 2 \)
(k) \( x = 0 \)
(l) \( x = 2 \)
(n) \( x = 0.2 \)
(o) \( x = 0.5 \)
(q) \( x = 1.5 \)
(r) \( x = 0 \)
(t) \( x = 0.8333 \)
(u) \( x = -0.3333 \)
These are the answers to all the equations.
Solución
Solve the equation by following steps:
- step0: Solve for \(x\):
\(3^{2x}=81\)
- step1: Rewrite in exponential form:
\(3^{2x}=3^{4}\)
- step2: Set the exponents equal:
\(2x=4\)
- step3: Divide both sides:
\(\frac{2x}{2}=\frac{4}{2}\)
- step4: Divide the numbers:
\(x=2\)
Solve the equation \( 16^{2 x}=4^{x-1} \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(16^{2x}=4^{x-1}\)
- step1: Rewrite the expression:
\(4^{4x}=4^{x-1}\)
- step2: Set the exponents equal:
\(4x=x-1\)
- step3: Move the variable to the left side:
\(4x-x=-1\)
- step4: Subtract the terms:
\(3x=-1\)
- step5: Divide both sides:
\(\frac{3x}{3}=\frac{-1}{3}\)
- step6: Divide the numbers:
\(x=-\frac{1}{3}\)
Solve the equation \( 25^{x}=125 \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(25^{x}=125\)
- step1: Rewrite in exponential form:
\(5^{2x}=5^{3}\)
- step2: Set the exponents equal:
\(2x=3\)
- step3: Divide both sides:
\(\frac{2x}{2}=\frac{3}{2}\)
- step4: Divide the numbers:
\(x=\frac{3}{2}\)
Solve the equation \( -2^{x}=-1 \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(-2^{x}=-1\)
- step1: Change the signs:
\(2^{x}=1\)
- step2: Rewrite in exponential form:
\(2^{x}=2^{0}\)
- step3: Set the exponents equal:
\(x=0\)
Solve the equation \( 10^{10 x}=100 \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(10^{10x}=100\)
- step1: Rewrite in exponential form:
\(10^{10x}=10^{2}\)
- step2: Set the exponents equal:
\(10x=2\)
- step3: Divide both sides:
\(\frac{10x}{10}=\frac{2}{10}\)
- step4: Divide the numbers:
\(x=\frac{1}{5}\)
Solve the equation \( -2^{x}=-16 \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(-2^{x}=-16\)
- step1: Change the signs:
\(2^{x}=16\)
- step2: Rewrite in exponential form:
\(2^{x}=2^{4}\)
- step3: Set the exponents equal:
\(x=4\)
Solve the equation \( -2^{x}=-32 \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(-2^{x}=-32\)
- step1: Change the signs:
\(2^{x}=32\)
- step2: Rewrite in exponential form:
\(2^{x}=2^{5}\)
- step3: Set the exponents equal:
\(x=5\)
Solve the equation \( 7^{x}=49 \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(7^{x}=49\)
- step1: Rewrite in exponential form:
\(7^{x}=7^{2}\)
- step2: Set the exponents equal:
\(x=2\)
Solve the equation \( 7^{x}=1 \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(7^{x}=1\)
- step1: Rewrite in exponential form:
\(7^{x}=7^{0}\)
- step2: Set the exponents equal:
\(x=0\)
Solve the equation \( 4^{x}=2 \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(4^{x}=2\)
- step1: Rewrite in exponential form:
\(2^{2x}=2\)
- step2: Set the exponents equal:
\(2x=1\)
- step3: Divide both sides:
\(\frac{2x}{2}=\frac{1}{2}\)
- step4: Divide the numbers:
\(x=\frac{1}{2}\)
Solve the equation \( 9^{3 x}=27^{x} \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(9^{3x}=27^{x}\)
- step1: Rewrite the expression:
\(3^{6x}=3^{3x}\)
- step2: Set the exponents equal:
\(6x=3x\)
- step3: Add or subtract both sides:
\(6x-3x=0\)
- step4: Subtract the terms:
\(3x=0\)
- step5: Rewrite the expression:
\(x=0\)
Solve the equation \( 9^{3 x-1}=27 \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(9^{3x-1}=27\)
- step1: Rewrite in exponential form:
\(3^{2\left(3x-1\right)}=3^{3}\)
- step2: Set the exponents equal:
\(2\left(3x-1\right)=3\)
- step3: Divide both sides:
\(\frac{2\left(3x-1\right)}{2}=\frac{3}{2}\)
- step4: Divide the numbers:
\(3x-1=\frac{3}{2}\)
- step5: Move the constant to the right side:
\(3x=\frac{3}{2}+1\)
- step6: Add the numbers:
\(3x=\frac{5}{2}\)
- step7: Multiply by the reciprocal:
\(3x\times \frac{1}{3}=\frac{5}{2}\times \frac{1}{3}\)
- step8: Multiply:
\(x=\frac{5}{6}\)
Here are the solutions for each equation:
(e) \( -2^{x} = -16 \)
To solve for \( x \):
\[
-2^{x} = -16 \implies 2^{x} = 16 \implies 2^{x} = 2^{4} \implies x = 4
\]
**Solution:** \( x = 4 \)
(f) \( -2^{x} = -32 \)
To solve for \( x \):
\[
-2^{x} = -32 \implies 2^{x} = 32 \implies 2^{x} = 2^{5} \implies x = 5
\]
**Solution:** \( x = 5 \)
(h) \( -2^{x} = -1 \)
To solve for \( x \):
\[
-2^{x} = -1 \implies 2^{x} = 1 \implies 2^{x} = 2^{0} \implies x = 0
\]
**Solution:** \( x = 0 \)
(i) \( 7^{x} = 49 \)
To solve for \( x \):
\[
7^{x} = 49 \implies 7^{x} = 7^{2} \implies x = 2
\]
**Solution:** \( x = 2 \)
(k) \( 7^{x} = 1 \)
To solve for \( x \):
\[
7^{x} = 1 \implies 7^{x} = 7^{0} \implies x = 0
\]
**Solution:** \( x = 0 \)
(l) \( 3^{2x} = 81 \)
To solve for \( x \):
\[
3^{2x} = 81 \implies 3^{2x} = 3^{4} \implies 2x = 4 \implies x = 2
\]
**Solution:** \( x = 2 \)
(n) \( 10^{10x} = 100 \)
To solve for \( x \):
\[
10^{10x} = 100 \implies 10^{10x} = 10^{2} \implies 10x = 2 \implies x = \frac{1}{5} \text{ or } 0.2
\]
**Solution:** \( x = \frac{1}{5} \)
(o) \( 4^{x} = 2 \)
To solve for \( x \):
\[
4^{x} = 2 \implies (2^{2})^{x} = 2 \implies 2^{2x} = 2^{1} \implies 2x = 1 \implies x = \frac{1}{2} \text{ or } 0.5
\]
**Solution:** \( x = \frac{1}{2} \)
(q) \( 25^{x} = 125 \)
To solve for \( x \):
\[
25^{x} = 125 \implies (5^{2})^{x} = 5^{3} \implies 5^{2x} = 5^{3} \implies 2x = 3 \implies x = \frac{3}{2} \text{ or } 1.5
\]
**Solution:** \( x = \frac{3}{2} \)
(r) \( 9^{3x} = 27^{x} \)
To solve for \( x \):
\[
9^{3x} = 27^{x} \implies (3^{2})^{3x} = (3^{3})^{x} \implies 3^{6x} = 3^{3x} \implies 6x = 3x \implies 3x = 0 \implies x = 0
\]
**Solution:** \( x = 0 \)
(t) \( 9^{3x-1} = 27 \)
To solve for \( x \):
\[
9^{3x-1} = 27 \implies (3^{2})^{3x-1} = 3^{3} \implies 3^{6x-2} = 3^{3} \implies 6x - 2 = 3 \implies 6x = 5 \implies x = \frac{5}{6} \text{ or } 0.8333
\]
**Solution:** \( x = \frac{5}{6} \)
(u) \( 16^{2x} = 4^{x-1} \)
To solve for \( x \):
\[
16^{2x} = 4^{x-1} \implies (4^{2})^{2x} = 4^{x-1} \implies 4^{4x} = 4^{x-1} \implies 4x = x - 1 \implies 3x = -1 \implies x = -\frac{1}{3} \text{ or } -0.3333
\]
**Solution:** \( x = -\frac{1}{3} \)
These are the solutions for all the equations provided.
Respondido por UpStudy AI y revisado por un tutor profesional

Explicar

Simplifique esta solución