Pregunta
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
\[
\frac{4d - 3}{d^{3}}
\]
Solución
To simplify the expression:
\[
\frac{4}{d^{2}} - \frac{3}{d^{3}}
\]
**Step 1: Find a Common Denominator**
The denominators are \( d^2 \) and \( d^3 \). The least common denominator (LCD) is \( d^3 \).
**Step 2: Rewrite Each Fraction with the Common Denominator**
\[
\frac{4}{d^{2}} = \frac{4 \cdot d}{d^{2} \cdot d} = \frac{4d}{d^{3}}
\]
\[
\frac{3}{d^{3}} \text{ remains the same.}
\]
**Step 3: Combine the Fractions**
\[
\frac{4d}{d^{3}} - \frac{3}{d^{3}} = \frac{4d - 3}{d^{3}}
\]
**Final Simplified Form:**
\[
\frac{4d - 3}{d^{3}}
\]
**Answer:**
After simplifying, the expression is (4 d – 3) divided by d cubed. Thus,
\[
\frac{4d - 3}{d^{3}}
\]
Respondido por UpStudy AI y revisado por un tutor profesional
Como
error msg


Beyond the Answer
To simplify the expression \( \frac{4}{d^{2}}-\frac{3}{d^{3}} \), we first need a common denominator. The least common denominator (LCD) here is \( d^{3} \). We can express the first term as \( \frac{4d}{d^{3}} \) to match the denominator of the second term. This gives us: \[ \frac{4d}{d^{3}} - \frac{3}{d^{3}} = \frac{4d - 3}{d^{3}} \] Thus, the simplified expression is \( \frac{4d - 3}{d^{3}} \). Now you have a clear and simplified representation of your expression, useful for further calculations or evaluations!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium