Pregunta
upstudy study bank question image url

9.) A weight attached to the end of a long spring is bouncing up and down. As it bounces, its distance from the floor varies sinusoidally with time. You start a stopwatch. When the stopwatch reads 0.3 seconds, the weight first reaches a high point 60 cm above the floor. The next low point, 40 cm above the floor, occurs at 1.8 seconds. Write an equation that models the distance from the floor with respect to time.

Ask by Mann Morrison. in the United States
Mar 12,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The distance from the floor as a function of time is: \[ d(t) = 10\cos\left(\frac{2\pi}{3}(t - 0.3)\right) + 50 \]

Solución

We begin by writing the distance function in the form \[ d(t)=A\cos\Big(B(t-C)\Big)+D, \] where - \( A \) is the amplitude, - \( B \) relates to the period, - \( C \) is the horizontal (phase) shift, and - \( D \) is the vertical (midline) shift. **Step 1. Find \(D\) (the midline).** The maximum distance is 60 cm and the minimum is 40 cm. Their average is \[ D=\frac{60+40}{2}=50. \] **Step 2. Find \(A\) (the amplitude).** \[ A=\frac{60-40}{2}=10. \] **Step 3. Find \(B\) using the period.** The time between a maximum and the next minimum is half a period. Since the weight is at a high point at \(t=0.3\) s and the next low point at \(t=1.8\) s, we have \[ \frac{T}{2}=1.8-0.3=1.5 \quad \Longrightarrow \quad T=3 \text{ seconds}. \] The relationship between \(B\) and the period \(T\) is \[ B=\frac{2\pi}{T}=\frac{2\pi}{3}. \] **Step 4. Determine \(C\) (the phase shift).** We choose the cosine model because the cosine function reaches its maximum at an angle of \(0\). Since the weight is at the high point (maximum) at \(t=0.3\) s, we set \[ B(t-C)=0 \quad \text{ when } \quad t=0.3. \] This gives \[ \frac{2\pi}{3}(0.3-C)=0 \quad \Longrightarrow \quad C=0.3. \] **Step 5. Write the final equation.** Substitute \(A\), \(B\), \(C\), and \(D\) into the function: \[ d(t)=10\cos\left(\frac{2\pi}{3}(t-0.3)\right)+50. \] This equation models the distance of the weight from the floor as a function of time.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To model the distance from the floor, we first need to determine the parameters of a sinusoidal function. The average height (midline) can be calculated as the midpoint between the high point (60 cm) and the low point (40 cm), which is 50 cm. The amplitude, the distance from the midline to either the high or low point, is 10 cm (60 cm - 50 cm or 50 cm - 40 cm). Next, we find the period, which is the total time it takes for one complete cycle. From the first high (0.3 seconds) to the low (1.8 seconds) is 1.5 seconds, suggesting that a full cycle (high to low to high) takes about 3 seconds. The frequency is thus \( \frac{2\pi}{3} \). Finally, we incorporate the phase shift. Since the first high occurs at 0.3 seconds, we can write the equation as follows: \[ d(t) = 50 + 10 \cos\left(\frac{2\pi}{3}(t - 0.3)\right) \] This function models the distance from the floor with respect to time, capturing the sinusoidal motion of the bouncy weight! Want to put that bouncing weight to practical use? You could create a simple energy conversion demonstration! Attach a small weight, an LED light, or even a small wind-up toy to the spring. As the weight bounces and compresses the spring, it not only helps visualize energy transfer but could also serve as a quirky desk toy. Plus, if you time its oscillations, you can impress friends with your newfound knowledge of physics in action! Got a budding interest in oscillations and waves? There’s an array of fascinating resources out there. Check out classic physics texts, like “The Feynman Lectures on Physics,” for a deeper dive into wave phenomena, or explore online platforms like Khan Academy, which offer interactive lessons on harmonic motion. Also, a book like “The Physics of Vibrations and Waves” by H. J. Pain can provide insight into how waves behave in various scenarios!

preguntas relacionadas

Latest Trigonometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad