Pregunta
upstudy study bank question image url

8. The ends of a horizontal water trough 10 ft . long are isosceles trapezoids with lower base 3 ft ., upper base 5 ft ., and altitude 2 ft . If the water level is rising at a rate of \( .25 \mathrm{in} / \mathrm{min} \) when the depth of the water is 1 ft , water entering the trough?

Ask by Wyatt Wheeler. in the United States
Jan 13,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Water is entering the trough at a rate of approximately \(0.0729 \, \text{ft}^3/\text{min}\) when the water depth is \(1 \, \text{ft}\).

Solución

To solve this problem, we need to find the rate at which water is entering the trough when the water level is rising at a rate of \(0.25 \, \text{in/min}\) and the depth of the water is \(1 \, \text{ft}\). ### Step 1: Understand the Geometry of the Trough The ends of the trough are isosceles trapezoids. The dimensions given are: - Lower base \(b_1 = 3 \, \text{ft}\) - Upper base \(b_2 = 5 \, \text{ft}\) - Altitude (height) \(h = 2 \, \text{ft}\) ### Step 2: Calculate the Area of the Trapezoid The area \(A\) of a trapezoid can be calculated using the formula: \[ A = \frac{1}{2} (b_1 + b_2) h \] Substituting the values: \[ A = \frac{1}{2} (3 + 5) \cdot 2 = \frac{1}{2} \cdot 8 \cdot 2 = 8 \, \text{ft}^2 \] ### Step 3: Determine the Volume of Water in the Trough The volume \(V\) of water in the trough when the depth of the water is \(d\) can be expressed as: \[ V = A \cdot L \] where \(L\) is the length of the trough. Given \(L = 10 \, \text{ft}\): \[ V = A \cdot 10 = 8 \cdot 10 = 80 \, \text{ft}^3 \] ### Step 4: Relate the Volume to the Depth of Water The area of the trapezoid changes as the water level rises. We need to find the area of the trapezoid when the water depth is \(d = 1 \, \text{ft}\). The area of the trapezoid at a depth \(d\) can be calculated using similar triangles. The height of the trapezoid is \(2 \, \text{ft}\), and the bases are \(3 \, \text{ft}\) and \(5 \, \text{ft}\). The width of the trapezoid at height \(d\) can be found using the ratio of the heights. The width of the trapezoid at height \(d\) is: \[ b_d = b_1 + \left( \frac{b_2 - b_1}{h} \cdot d \right) = 3 + \left( \frac{5 - 3}{2} \cdot d \right) = 3 + d \] ### Step 5: Calculate the Area at \(d = 1 \, \text{ft}\) Substituting \(d = 1\): \[ b_d = 3 + 1 = 4 \, \text{ft} \] Now, the area \(A_d\) at \(d = 1 \, \text{ft}\) is: \[ A_d = \frac{1}{2} (b_1 + b_d) d = \frac{1}{2} (3 + 4) \cdot 1 = \frac{1}{2} \cdot 7 = 3.5 \, \text{ft}^2 \] ### Step 6: Calculate the Volume of Water at \(d = 1 \, \text{ft}\) The volume \(V_d\) of water when the depth is \(1 \, \text{ft}\): \[ V_d = A_d \cdot L = 3.5 \cdot 10 = 35 \, \text{ft}^3 \] ### Step 7: Find the Rate of Change of Volume The rate of change of volume with respect to time can be found using the relationship: \[ \frac{dV}{dt} = A_d \cdot \frac{dh}{dt} \] where \(\frac{dh}{dt} = 0.25 \, \text{in/min} = \frac{0.25}{12} \, \text{ft/min}\). Now substituting the values: \[ \frac{dV}{dt} = 3.5 \cdot \frac{0.25}{12} \] ### Step 8: Calculate the Rate of Water Entering the Trough Now we can calculate: \[ \frac{dV}{dt} = 3.5 \cdot \frac{0.25}{12} = \frac{3.5 \cdot 0.25}{12} = \frac{0.875}{12} \approx 0.0729 \, \text{ft}^3/\text{min} \] ### Conclusion The rate at which water is entering the trough when the depth of the water is \(1 \, \text{ft}\) is approximately \(0.0729 \, \text{ft}^3/\text{min}\).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the flow rate of water entering the trough, we first calculate the volume of water when the depth is 1 ft. The cross-section of the water is shaped like a trapezoid. The formula for the area \( A \) of a trapezoid is: \[ A = \frac{1}{2}(b_1 + b_2)h \] In this case, when the depth is 1 ft, we need to adjust the bases according to the height ratio. The full height of the trapezoid is 2 ft, so the bases scale proportionally: - The lower base \( b_1 = 3 \, \text{ft} \) - The upper base when the water depth is 1 ft can be calculated as follows: The slope of the sides can be found using similar triangles. The difference in length from full height is \( \frac{(5-3)}{2} = 1 \) ft on either side. Therefore, the upper base of the water becomes \( 5 - 2 = 3 \, \text{ft} \). Now, substituting: \[ A = \frac{1}{2}(3 + 3)(1) = \frac{6}{2} = 3 \, \text{ft}^2 \] The volume \( V \) of water when the depth is 1 ft and length is 10 ft is: \[ V = A \times \text{length} = 3 \, \text{ft}^2 \times 10 \, \text{ft} = 30 \, \text{ft}^3 \] Next, we need to find how fast the volume is changing. The water level is rising at \( 0.25 \text{ in/min} \). Converting this to feet gives \( 0.25 \text{ in} = \frac{0.25}{12} \text{ ft/min} \approx 0.0208 \text{ ft/min} \). To get the flow rate \( Q \) in cubic feet per minute as the water rises, sum both volumes regarding A and the height: \[ Q = A \times \frac{dh}{dt} \] Using \( A = 3 \, ft^2 \): \[ Q = 3 \, \text{ft}^2 \times 0.0208 \, \text{ft/min} \approx 0.0624 \, \text{ft}^3/\text{min} \] So, the flow rate of the water entering the trough is approximately \( 0.0624 \, \text{ft}^3/\text{min} \) or converting to gallons (1 ft³ = 7.48 gallons): \[ Q \approx 0.0624 \times 7.48 \approx 0.466 \, \text{gal/min} \] In conclusion, the trough should have about \( 0.466 \) gallons of water entering per minute when the water level is rising at the specified rate and with the provided dimensions.

preguntas relacionadas

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad