Pregunta
upstudy study bank question image url

You want to be able to withdraw \( \$ 20,000 \) from your account each year for 20 years after you retire, You expect to retire in 15 years. If your account earns \( 9 \% \) interest, how much will you need to deposit each year until retirement to achieve your retirement goals? 7231.96 Round your answer to the nearest cent. Question Help: D video D port to forum

Ask by Warren Willis. in the United States
Feb 21,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

You need to deposit approximately \$16,121.38 each year until retirement to achieve your retirement goals.

Solución

To determine how much you need to deposit each year until retirement to achieve your retirement goals, we can use the formula for calculating the present value of an annuity: \[ PV = \frac{PMT}{r} \left( 1 - \frac{1}{(1 + r)^n} \right) \] Where: - \( PV \) is the present value (the amount you need to deposit each year until retirement), - \( PMT \) is the annual withdrawal amount (\$20,000), - \( r \) is the annual interest rate (9% or 0.09), - \( n \) is the number of years until retirement (15 years). Given that you want to withdraw \$20,000 each year for 20 years after retirement, we need to calculate the present value of the annuity for 15 years until retirement. Substitute the values into the formula: \[ PV = \frac{20000}{0.09} \left( 1 - \frac{1}{(1 + 0.09)^{15}} \right) \] Now, we can calculate the present value to determine how much you need to deposit each year until retirement. Calculate the value by following steps: - step0: Calculate: \(\frac{20000}{0.09}\times \left(1-\frac{1}{\left(1+0.09\right)^{15}}\right)\) - step1: Add the numbers: \(\frac{20000}{0.09}\times \left(1-\frac{1}{1.09^{15}}\right)\) - step2: Convert the expressions: \(\frac{20000}{0.09}\times \left(1-\frac{1}{\left(\frac{109}{100}\right)^{15}}\right)\) - step3: Simplify: \(\frac{20000}{0.09}\times \left(1-\frac{100^{15}}{109^{15}}\right)\) - step4: Subtract the numbers: \(\frac{20000}{0.09}\times \frac{109^{15}-100^{15}}{109^{15}}\) - step5: Divide the numbers: \(\frac{2000000}{9}\times \frac{109^{15}-100^{15}}{109^{15}}\) - step6: Multiply the fractions: \(\frac{2000000\left(109^{15}-100^{15}\right)}{9\times 109^{15}}\) - step7: Multiply: \(\frac{2000000\times 109^{15}-2000000\times 100^{15}}{9\times 109^{15}}\) The present value of the annuity is approximately \$161,213.77. Therefore, you need to deposit approximately \$16,121.38 each year until retirement to achieve your retirement goals.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To ensure you can withdraw \( \$20,000 \) each year for 20 years after retirement, you need to calculate the total amount you'll need to have saved by the time you retire. Using the formula for the present value of an annuity, the total required amount can be determined as approximately \( \$264,391.79 \). This amount incorporates the \( 9\% \) interest your account will earn. Next, to find out how much you need to save each year for the next 15 years, you can apply the future value of an annuity formula. If you deposit approximately \( \$9,431.14 \) each year, starting today, at a \( 9\% \) interest rate, you will reach your target amount by the time you retire! So, saving is not just smart—it’s a rewarding prospect!

preguntas relacionadas

Latest Economics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad