Pregunta
upstudy study bank question image url

You want to be able to withdraw \( \$ 35,000 \) from your account each year for 30 years after you retire. You expect to retire in 20 years. If your account earns \( 7 \% \) interest, how much will you need to deposit each year until retirement to achieve your retirement goals?

Ask by Carroll Norton. in the United States
Feb 21,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

You need to deposit approximately \$370,790.50 each year until retirement to achieve your retirement goals.

Solución

To determine how much you need to deposit each year until retirement to achieve your retirement goals, we can use the formula for the present value of an annuity: \[ PV = \frac{PMT}{r} \left( 1 - \frac{1}{(1 + r)^n} \right) \] Where: - \( PV \) is the present value (the amount you need to deposit each year until retirement), - \( PMT \) is the annual withdrawal amount (\$35,000), - \( r \) is the annual interest rate (7%), - \( n \) is the number of years until retirement (20 years). Given: - Annual withdrawal amount (\( PMT \)) = \$35,000 - Annual interest rate (\( r \)) = 7% = 0.07 - Number of years until retirement (\( n \)) = 20 years Substitute the given values into the formula to calculate the present value (\( PV \)): \[ PV = \frac{35000}{0.07} \left( 1 - \frac{1}{(1 + 0.07)^{20}} \right) \] Now, we can calculate the present value (\( PV \)) to determine how much you need to deposit each year until retirement. Calculate the value by following steps: - step0: Calculate: \(\frac{35000}{0.07}\times \left(1-\frac{1}{\left(1+0.07\right)^{20}}\right)\) - step1: Add the numbers: \(\frac{35000}{0.07}\times \left(1-\frac{1}{1.07^{20}}\right)\) - step2: Convert the expressions: \(\frac{35000}{0.07}\times \left(1-\frac{1}{\left(\frac{107}{100}\right)^{20}}\right)\) - step3: Simplify: \(\frac{35000}{0.07}\times \left(1-\frac{100^{20}}{107^{20}}\right)\) - step4: Subtract the numbers: \(\frac{35000}{0.07}\times \frac{107^{20}-100^{20}}{107^{20}}\) - step5: Divide the numbers: \(500000\times \frac{107^{20}-100^{20}}{107^{20}}\) - step6: Multiply: \(\frac{500000\left(107^{20}-100^{20}\right)}{107^{20}}\) - step7: Multiply: \(\frac{500000\times 107^{20}-500000\times 100^{20}}{107^{20}}\) The present value (\( PV \)) is approximately \$370,790.50. This means that you need to deposit approximately \$370,790.50 each year until retirement to achieve your retirement goals of withdrawing \$35,000 each year for 30 years after retirement.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To find out how much you will need to deposit each year until retirement, we first need to calculate the total amount needed at retirement to withdraw \( \$ 35,000 \) annually for 30 years at an interest rate of \( 7\% \). The total amount \( S \) required at retirement can be found using the formula for the present value of an annuity: \[ S = \frac{C \times (1 - (1 + r)^{-n})}{r} \] where \( C = 35,000 \), \( r = 0.07 \), and \( n = 30 \). Plugging in the values: \[ S = \frac{35,000 \times (1 - (1 + 0.07)^{-30})}{0.07} \approx \frac{35,000 \times 13.385}{0.07} \approx 6,604,250 \] Now, we need to determine how much to deposit each year for the next 20 years to reach this amount. Using the future value of a series formula: \[ FV = PMT \times \frac{(1 + r)^{n} - 1}{r} \] We rearrange it to solve for \( PMT \): \[ PMT = \frac{S \times r}{(1 + r)^{n} - 1} \] Substituting our values into the formula: \[ PMT = \frac{6,604,250 \times 0.07}{(1 + 0.07)^{20} - 1} \approx \frac{462,297.5}{3.86968} \approx 119,607.83 \] So you will need to deposit approximately \( \$ 119,607.83 \) each year until retirement to achieve your goal.

preguntas relacionadas

Latest Economics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad