Pregunta
Enter the \( x \)-value at which the function is not differentiable. If there is no such point, enter NA. \[ \begin{array}{c}f(x)=|x-2|+2 \\ x=[\text { ? }]\end{array} \]
Ask by Adkins Bowman. in the United States
Feb 21,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
The function is not differentiable at \( x = 2 \).
Solución
To determine the \( x \)-value at which the function \( f(x) = |x - 2| + 2 \) is not differentiable, we need to analyze the absolute value function.
1. **Identify the point of non-differentiability**: The function \( |x - 2| \) is not differentiable at the point where the expression inside the absolute value equals zero. This occurs when:
\[
x - 2 = 0 \implies x = 2
\]
2. **Check the behavior around \( x = 2 \)**:
- For \( x < 2 \), \( |x - 2| = -(x - 2) = 2 - x \).
- For \( x > 2 \), \( |x - 2| = x - 2 \).
3. **Calculate the left-hand and right-hand derivatives at \( x = 2 \)**:
- Left-hand derivative (as \( x \) approaches 2 from the left):
\[
f'(x) = \frac{d}{dx}(2 - x) = -1
\]
- Right-hand derivative (as \( x \) approaches 2 from the right):
\[
f'(x) = \frac{d}{dx}(x - 2) = 1
\]
4. **Conclusion**: Since the left-hand derivative and right-hand derivative at \( x = 2 \) are not equal, the function is not differentiable at this point.
Thus, the \( x \)-value at which the function is not differentiable is:
\[
x = 2
\]
Respondido por UpStudy AI y revisado por un tutor profesional
Como
error msg


Extra Insights
The function \( f(x) = |x - 2| + 2 \) is composed of an absolute value function, which can be non-differentiable at points where the expression inside the absolute value equals zero. In this case, this happens when: \[ x - 2 = 0 \Rightarrow x = 2. \] At \( x = 2 \), the function changes from \( f(x) = -x + 4 \) (for \( x < 2 \)) to \( f(x) = x \) (for \( x > 2 \)). Hence, the function is not differentiable at \( x = 2 \). So the answer is: \( x = 2 \)
preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium