Pregunta
upstudy study bank question image url

A. A 0.120 m glucose \( \left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right) \) solution contains 0.120 mol of glucose in 1.00 kg of water. B. What are the mole fractions of \( \mathrm{HC}_{3} \mathrm{OH} \) and H 2 O in the solution. It contains 128 grams of \( \mathrm{HC}_{3} \mathrm{OH} \) and 108 grams of \( \mathrm{H}_{2} \mathrm{O} \). C. What are the mole fractions of ethanol, \( \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \), and water in a solution prepared by mixing 70.0 g of ethanol with 30.0 g of Water? D. What are the mole fractions of ethanol, C 2 H 5 OH , and water in a solution prepared by mixing 70.0 mL of ethanol with 30.0 mL of water at \( 25^{\circ} \mathrm{C} \) ? The density of ethanol is \( 0.789 \mathrm{~g} / \mathrm{mL} \) and that of water is \( 1.00 \mathrm{~g} / \mathrm{mL} \).

Ask by Ward Ellis. in the Philippines
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

In each part: - **Part A**: 0.00216 mol glucose and 0.99784 mol water. - **Part B**: 0.262 mol n-propanol and 0.738 mol water. - **Part C**: 0.477 mol ethanol and 0.523 mol water. - **Part D**: 0.418 mol ethanol and 0.582 mol water. These mole fractions represent the proportions of each substance in their respective solutions.

Solución

Below are one set of acceptable answers. In what follows we assume the following approximate molar masses:  • Glucose, C₆H₁₂O₆: ≈180.16 g/mol (not needed numerically here)  • Water, H₂O: ≈18.02 g/mol  • n‐Propanol (here written HC₃OH, with molecular formula C₃H₇OH, i.e. C₃H₈O): ≈60.1 g/mol  • Ethanol, C₂H₅OH: ≈46.07 g/mol Note that mole fraction (x) is defined as   xᵢ = (moles of i) / (total moles of all species). The problems below have four parts: ──────────────────────────── Part A. Glucose solution A 0.120 m solution means 0.120 mol of glucose is dissolved in 1.00 kg (1000 g) of water. (No numerical “question” is asked here, but we can note the numbers.) The moles of water are   n(H₂O) = 1000 g ÷ 18.02 g/mol ≈ 55.5 mol. Thus one has 0.120 (glucose) + 55.5 (water) ≈ 55.62 total moles. If one wished to give the mole fractions:   x(glucose) = 0.120/55.62 ≈ 0.00216,   x(H₂O) = 55.5/55.62 ≈ 0.99784. ──────────────────────────── Part B. Mixture of HC₃OH and water The solution is made by mixing 128 g of HC₃OH (n‐propanol) with 108 g of water. 1. Calculate moles of each:   n(HC₃OH) = 128 g ÷ 60.1 g/mol ≈ 2.13 mol,   n(H₂O) = 108 g ÷ 18.02 g/mol ≈ 6.00 mol. 2. Total moles = 2.13 + 6.00 = 8.13 mol. 3. Mole fractions:   x(HC₃OH) = 2.13/8.13 ≈ 0.262,   x(H₂O) = 6.00/8.13 ≈ 0.738. ──────────────────────────── Part C. Mixture by mass: 70.0 g ethanol and 30.0 g water Step 1. Find moles:   n(ethanol) = 70.0 g ÷ 46.07 g/mol ≈ 1.52 mol,   n(H₂O) = 30.0 g ÷ 18.02 g/mol ≈ 1.67 mol. Step 2. Total moles = 1.52 + 1.67 = 3.19 mol. Step 3. Mole fractions:   x(ethanol) = 1.52/3.19 ≈ 0.477,   x(H₂O) = 1.67/3.19 ≈ 0.523. ──────────────────────────── Part D. Mixture by volume: 70.0 mL ethanol and 30.0 mL water at 25°C Because the volumes are given, we first convert to mass using the densities. 1. Masses:   Ethanol: mass = 70.0 mL × 0.789 g/mL = 55.23 g.   Water: mass = 30.0 mL × 1.00 g/mL = 30.0 g. 2. Moles:   n(ethanol) = 55.23 g ÷ 46.07 g/mol ≈ 1.20 mol,   n(H₂O) = 30.0 g ÷ 18.02 g/mol ≈ 1.67 mol. 3. Total moles = 1.20 + 1.67 = 2.87 mol. 4. Mole fractions:   x(ethanol) = 1.20/2.87 ≈ 0.418,   x(H₂O) = 1.67/2.87 ≈ 0.582. ──────────────────────────── Summary of Answers A. In 1.00 kg water with 0.120 mol glucose:   x(glucose) ≈ 0.00216  and  x(H₂O) ≈ 0.99784. B. For 128 g HC₃OH and 108 g water:   x(HC₃OH) ≈ 0.262  and  x(H₂O) ≈ 0.738. C. For 70.0 g ethanol and 30.0 g water:   x(ethanol) ≈ 0.477  and  x(H₂O) ≈ 0.523. D. For 70.0 mL ethanol (density 0.789 g/mL) and 30.0 mL water:   x(ethanol) ≈ 0.418  and  x(H₂O) ≈ 0.582. Any answer that is equivalent within the limits of rounding is correct.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

When you mix substances like ethanol and water, it’s good to know the fundamental concept of mole fractions! The mole fraction of a component in a mixture is the number of moles of that component divided by the total number of moles of all the components in that mixture. To find out the mole fractions, first calculate the moles of each substance using their molar masses and then apply the formula for mole fraction. Another interesting tidbit: when mixing liquids like ethanol and water, you might expect them to combine exactly, but that’s not the case! The molecules can interact differently, causing the resulting volume to be less than the sum of the individual volumes. This phenomenon is known as volume contraction, which is why it’s crucial to measure by mass during calculations — it gives a more accurate representation of the substances involved!

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad